Previous |  Up |  Next

Article

Title: Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds (English)
Author: Khanh, Nguyen Ngoc
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 207-219
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds $(M,g)$ for the following general heat equation \[ u_t=\Delta _V u+au\log u+bu \] where $a$ is a constant and $b$ is a differentiable function defined on $M\times [0, \infty )$. We suppose that the Bakry-Émery curvature and the $N$-dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently. (English)
Keyword: gradient estimates
Keyword: general heat equation
Keyword: Laplacian comparison theorem
Keyword: $V$-Bochner-Weitzenböck
Keyword: Bakry-Emery Ricci curvature
MSC: 35B53
MSC: 58J35
idZBL: Zbl 06674900
idMR: MR3610650
DOI: 10.5817/AM2016-4-207
.
Date available: 2016-12-20T21:47:36Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145929
.
Reference: [1] Chen, Q., Jost, J., Qiu, H.B.: Existence and Liouville theorems for $V$-harmonic maps from complete manifolds.Ann. Global Anal. Geom. 42 (2012), 565–584. Zbl 1270.58010, MR 2995205, 10.1007/s10455-012-9327-z
Reference: [2] Davies, E.B.: Heat kernels and spectral theory.Cambridge University Press, 1989. Zbl 0699.35006, MR 0990239
Reference: [3] Dung, N.T., Khanh, N.N.: Gradient estimates of Hamilton - Souplet - Zhang type for a general heat equation on Riemannian manifolds.Arch. Math (Basel) 105 (2015), 479–490. Zbl 1329.58023, MR 3413923, 10.1007/s00013-015-0828-4
Reference: [4] Huang, G.Y., Ma, B.Q.: Gradient estimates for a nonlinear parabolic equation on Riemannian manifolds.Arch. Math. (Basel) 94 (2010), 265–275. Zbl 1194.58020, MR 2602453, 10.1007/s00013-009-0091-7
Reference: [5] Li, P., Yau, S.T.: On the parabolic kernel of the Schrödinger operator.Acta Math. 156 (1986), 152–201. Zbl 0611.58045, MR 0834612
Reference: [6] Li, Y.: Li-Yau-Hamilton estimates and Bakry-Emery Ricci curvature.Nonlinear Anal. 113 (2015), 1–32. Zbl 1310.58015, MR 3281843
Reference: [7] Negrin, E.R.: Gradient estimates and a Liouville type theorem for the Schrödinger operator.J. Funct. Anal. 127 (1995), 198–203. Zbl 0842.58078, MR 1308622, 10.1006/jfan.1995.1008
.

Files

Files Size Format View
ArchMathRetro_052-2016-4_2.pdf 514.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo