Previous |  Up |  Next

Article

Title: Parallel and totally geodesic hypersurfaces of solvable Lie groups (English)
Author: Nasehi, Mehri
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 221-231
Summary lang: English
.
Category: math
.
Summary: In this paper we consider special examples of homogeneous spaces of arbitrary odd dimension which are given in [5] and [16]. We obtain the complete classification and explicitly describe parallel and totally geodesic hypersurfaces of these spaces in both Riemannian and Lorentzian cases. (English)
Keyword: totally geodesic
Keyword: parallel
Keyword: hypersurface
Keyword: solvable Lie group
MSC: 53C30
MSC: 53C42
idZBL: Zbl 06674901
idMR: MR3610651
DOI: 10.5817/AM2016-4-221
.
Date available: 2016-12-20T21:49:01Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145930
.
Reference: [1] Aghasi, M., Nasehi, M.: Some geometrical properties of a five-dimensional solvable Lie group.Differ. Geom. Dyn. Syst. 15 (2013), 1–12. Zbl 1331.53071, MR 3073067
Reference: [2] Aghasi, M., Nasehi, M.: On homogeneous Randers spaces with Douglas or naturally reductive metrics.Differ. Geom. Dyn. Syst. 17 (2015), 1–12. Zbl 1333.53068, MR 3367072
Reference: [3] Aghasi, M., Nasehi, M.: On the geometrical properties of solvable Lie groups.Adv. Geom. 15 (4) (2015), 507–517. Zbl 1328.53062, MR 3406478, 10.1515/advgeom-2015-0025
Reference: [4] Belkhelfa, M., Dillen, F., Inoguchi, J.: Surfaces with parallel second fundamental form in Bianchi Cartan Vranceanu spaces.PDE's, Submanifolds and affine differential geometry, vol. 57, Banach Centre Publishing, Polish Academy Sciences, Warsaw, 2002, pp. 67–87. Zbl 1029.53071, MR 1972463
Reference: [5] Božek, M.: Existence of generalized symmetric Riemannian spaces with solvable isometry group.Časopis pěest. mat. 105 (1980), 368–384. Zbl 0475.53045, MR 0597914
Reference: [6] Calvaruso, G., Kowalski, O., Marinosci, R.: Homogeneous geodesics in solvable Lie groups.Acta Math. Hungar. 101 (2003), 313–322. Zbl 1057.53041, MR 2017938, 10.1023/B:AMHU.0000004942.87374.0e
Reference: [7] Calvaruso, G., Van der Veken, J., : Lorentzian symmetric three-spaces and the classification of their parallel surfaces.Internat. J. Math. 20 (2009), 1185–1205. Zbl 1177.53018, MR 2574312, 10.1142/S0129167X09005728
Reference: [8] Calvaruso, G., Van der Veken, J., : Parallel surfaces in three-dimensional Lorentzian Lie groups.Taiwanese J. Math. 14 (2010), 223–250. Zbl 1194.53019, MR 2603452, 10.11650/twjm/1500405737
Reference: [9] Calvaruso, G., Van der Veken, J., : Totally geodesic and parallel hypersurfaces of four-dimensional oscillator groups.Results Math. 64 (2013), 135–153. Zbl 1279.53056, MR 3095133, 10.1007/s00025-012-0304-4
Reference: [10] Chen, B.-Y.: Complete classification of parallel spatial surfaces in pseudo-Riemannian space forms with arbitrary index and dimension.J. Geom. Phys. 60 (2010), 260–280. Zbl 1205.53061, MR 2587393, 10.1016/j.geomphys.2009.09.012
Reference: [11] Chen, B.-Y., Van der Veken, J., : Complete classification of parallel surfaces in 4-dimensional Lorentzian space forms.Tohoku Math. J. 61 (2009), 1–40. Zbl 1182.53018, MR 2501861, 10.2748/tmj/1238764545
Reference: [12] De Leo, B., Van der Veken, J., : Totally geodesic hypersurfaces of four-dimensional generalized symmetric spaces.Geom. Dedicata 159 (2012), 373–387. Zbl 1247.53076, MR 2944538, 10.1007/s10711-011-9665-1
Reference: [13] Dillen, F., Van der Veken, J., : Higher order parallel surfaces in the Heisenberg group.Differential Geom. Appl. 26 (1) (2008), 1–8. Zbl 1142.53017, MR 2393968, 10.1016/j.difgeo.2007.11.001
Reference: [14] Inoguchi, J., Van der Veken, J., : Parallel surfaces in the motion groups E(1, 1) and E(2).Bull. Belg. Math. Soc. Simon Stevin. 14 (2007), 321–332. Zbl 1125.53040, MR 2341567
Reference: [15] Inoguchi, J., Van der Veken, J., : A complete classification of parallel surfaces in three-dimensional homogeneous spaces.Geom. Dedicata 131 (2008), 159–172. Zbl 1136.53016, MR 2369197, 10.1007/s10711-007-9222-0
Reference: [16] Kowalski, O.: Generalized Symmetric Spaces.Lecture Notes in Math., vol. 805, Springer-Verlag, Berlin, Heidelberg, New York, 1980. Zbl 0431.53042, MR 0579184
Reference: [17] Lawson, H.B.: Local rigidity theorems for minimal hypersurfaces.Ann. of Math. (2) 89 (1969), 187–197. Zbl 0174.24901, MR 0238229, 10.2307/1970816
Reference: [18] Nasehi, M.: Parallel and totally geodesic hypersurfaces of 5-dimensional 2-step homogeneous nilmanifolds.Czechoslovak Math. J. 66 (2) (2016), 547–559. MR 3519620, 10.1007/s10587-016-0274-x
Reference: [19] Simon, U., Weinstein, A.: Anwendungen der De Rhamschen Zerlegung auf Probleme der lokalen Flächentheorie.Manuscripta Math. 1 (1969), 139–146. Zbl 0172.46701, MR 0246234, 10.1007/BF01173099
.

Files

Files Size Format View
ArchMathRetro_052-2016-4_3.pdf 488.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo