Previous |  Up |  Next

Article

Title: Initial value problems for fractional functional differential inclusions with Hadamard type derivative (English)
Author: Guerraiche, Nassim
Author: Hamani, Samira
Author: Henderson, Johnny
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 4
Year: 2016
Pages: 263-273
Summary lang: English
.
Category: math
.
Summary: We establish sufficient conditions for the existence of solutions of a class of fractional functional differential inclusions involving the Hadamard fractional derivative with order $\alpha \in (0,1]$. Both cases of convex and nonconvex valued right hand side are considered. (English)
Keyword: fractional differential inclusion
Keyword: Hadamard-type fractional derivative
Keyword: fractional integral
Keyword: fixed point
Keyword: convex
MSC: 26A33
MSC: 34A60
idZBL: Zbl 06674903
idMR: MR3610653
DOI: 10.5817/AM2016-4-263
.
Date available: 2016-12-20T21:53:06Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145932
.
Reference: [1] Agarwal, R.P, Benchohra, M., Hamani, S.: A survey on existence results for boundary value problems for nonlinear fractional differential equations and inclusions.Acta Appl. Math. 109 (3) (2010), 973–1033. MR 2596185, 10.1007/s10440-008-9356-6
Reference: [2] Ahmed, B., Ntouyas, S.K.: Initial value problems for hybrid Hadamard fractional equations.EJDE 2014 (161) (2014), 1–8. MR 3239404
Reference: [3] Aubin, J.P., Cellina, A.: Differential Inclusions.Springer-Verlag, Berlin-Heidelberg, New York, 1984. Zbl 0538.34007, MR 0755330
Reference: [4] Aubin, J.P., Frankowska, H.: Set-Valued Analysis.Birkhäuser, Boston, 1990. Zbl 0713.49021, MR 1048347
Reference: [5] Benchohra, M., Djebali, S., Hamani, S.: Boundary value problems of differential inclusions with Riemann-Liouville fractional derivative.Nonlinear Oscillation 14 (1) (2011), 7–20. MR 2976264, 10.1007/s11072-011-0137-1
Reference: [6] Benchohra, M., Hamani, S.: Boundary value problems for differential inclusions with fractional order.Diss. Math. Diff. Inclusions. Control and Optimization 28 (2008), 147–164. Zbl 1181.26012, MR 2548782, 10.7151/dmdico.1099
Reference: [7] Benchohra, M., Hamani, S.: Nonlinear boundary value problems for differential inclusions with Caputo fractional derivative.Topol. Meth. Nonlinear Anal. 32 (1) (2008), 115–130. Zbl 1180.26002, MR 2466806
Reference: [8] Bressan, A., Colombo, G.: Extensions and selections of maps with decomposable values.Studia Math. 90 (1988), 69–86. Zbl 0677.54013, MR 0947921, 10.4064/sm-90-1-69-86
Reference: [9] Burton, T.A., Kirk, C.: A fixed point theorem of Krasnoselskii-Schaefer type.Math. Nachr. 189 (1998), 23–31. Zbl 0896.47042, MR 1492921, 10.1002/mana.19981890103
Reference: [10] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Composition of Hadamard-type fractional integration operators and the semigroup property.J. Math. Anal. Appl. 269 (2002), 387–400. MR 1907120, 10.1016/S0022-247X(02)00049-5
Reference: [11] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Fractional calculus in the Mellin setting and Hadamard-type fractional integrals.J. Math. Anal. Appl. 269 (2002), 1–27. Zbl 0995.26007, MR 1907871, 10.1016/S0022-247X(02)00001-X
Reference: [12] Butzer, P.L., Kilbas, A.A., Trujillo, J.J.: Mellin transform analysis and integration by parts for Hadamard-type fractional integrals.J. Math. Anal. Appl. 270 (2002), 1–15. Zbl 1022.26011, MR 1911748, 10.1016/S0022-247X(02)00066-5
Reference: [13] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions.Lecture Notes in Math., vol. 580, Springer-Verlag, Berlin-Heidelberg-New York, 1977. Zbl 0346.46038, MR 0467310, 10.1007/BFb0087688
Reference: [14] Covitz, H., Nadler, Jr., S.B.: Multivalued contraction mappings in generalized metric spaces.Israel J. Math. 8 (1970), 5–11. MR 0263062, 10.1007/BF02771543
Reference: [15] Deimling, K.: Multivalued Differential Equations.Walter De Gruyter, Berlin-New York, 1992. Zbl 0820.34009, MR 1189795
Reference: [16] Delbosco, D., Rodino, L.: Existence and uniqueness for a nonlinear fractional differential equation.J. Math. Anal. Appl. 204 (1996), 609–625. Zbl 0881.34005, MR 1421467, 10.1006/jmaa.1996.0456
Reference: [17] Diethelm, K., Ford, N.J.: Analysis of fractional differential equations.J. Math. Anal. Appl. 265 (2002), 229–248. Zbl 1014.34003, MR 1876137, 10.1006/jmaa.2000.7194
Reference: [18] Fryszkowski, A.: Continuous selections for a class of nonconvex multivalued maps.Studia Math. 76 (1983), 163–174. MR 0730018, 10.4064/sm-76-2-163-174
Reference: [19] Fryszkowski, A.: Fixed Point Theory for Decomposable Sets. Topological Fixed Point Theory and Its Applications.vol. 2, Kluwer Academic Publishers, Dordrecht, 2004. MR 2084131
Reference: [20] Hadamard, J.: Essai sur l’etude des fonctions donnees par leur development de Taylor.J. Math. Pure Appl. 8 (1892), 101–186.
Reference: [21] Hamani, S., Benchohra, M., Graef, J.R.: Existence results for boundary-value problems with nonlinear fractional differential inclusions and integral conditions.EJDE 2010 No. 20 (2010), 1–16. Zbl 1185.26010, MR 2592005
Reference: [22] Heymans, N., Podlubny, I.: Physical interpretation of initial conditions for fractional differential equations with Riemann-Liouville fractional derivatives.Rheologica Acta 45 (5) (2006), 765–772. MR 1658022, 10.1007/s00397-005-0043-5
Reference: [23] Hilfer, R.: Applications of Fractional Calculus in Physics.World Scientific, Singapore, 2000. Zbl 0998.26002, MR 1890104
Reference: [24] Kaufmann, E.R., Mboumi, E.: Positive solutions of a boundary value problem for a nonlinear fractional differential equation.EJQTDE 2007 (3) (2007), 11pp. MR 2369417
Reference: [25] Kilbas, A.A., Marzan, S.A.: Nonlinear differential equations with the Caputo fractional derivative in the space of continuously differentiable functions.Differential Equ. 41 (2005), 84–89. Zbl 1160.34301, MR 2213269, 10.1007/s10625-005-0137-y
Reference: [26] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations.North-Holland Mathematics Studies, Elsevier Science B.V., Amsterdam, 2006. Zbl 1092.45003, MR 2218073
Reference: [27] Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Differential Equations.John Wiley, New York, 1993. MR 1219954
Reference: [28] Momani, S.M., Hadid, S.B., Alawenh, Z.M.: Some analytical properties of solutions of differential equations of noninteger order.Int. J. Math. Math. Sci. 2004 (2004), 697–701. Zbl 1069.34002, MR 2054178, 10.1155/S0161171204302231
Reference: [29] Podlubny, I.: Fractional Differential Equations.Academic Press, San Diego, 1999. Zbl 0924.34008, MR 1658022
Reference: [30] Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation.Fract. Calculus Appl. Anal. 5 (2002), 367–386. Zbl 1042.26003, MR 1967839
Reference: [31] Thiramanus, P., Ntouyas, S.K., Tariboon, J.: Existence and uniqueness results for Hadamard-type fractional differential equations with nonlocal fractional integral boundary conditions.Abstr. Appl. Anal. (2014), Art ID 902054, 9 pp. MR 3228094
Reference: [32] Zhang, S.: Positive solutions for boundary-value problems of nonlinear fractional differential equations.EJDE (2006), no. 36, 1–12. Zbl 1096.34016, MR 2213580
.

Files

Files Size Format View
ArchMathRetro_052-2016-4_5.pdf 503.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo