Title:
|
$\mathfrak{g}$-quasi-Frobenius Lie algebras (English) |
Author:
|
Pham, David N. |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
52 |
Issue:
|
4 |
Year:
|
2016 |
Pages:
|
233-262 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A Lie version of Turaev’s $\overline{G}$-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a $\mathfrak{g}$-quasi-Frobenius Lie algebra for $\mathfrak{g}$ a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra $(\mathfrak{q},\beta )$ together with a left $\mathfrak{g}$-module structure which acts on $\mathfrak{q}$ via derivations and for which $\beta $ is $\mathfrak{g}$-invariant. Geometrically, $\mathfrak{g}$-quasi-Frobenius Lie algebras are the Lie algebra structures associated to symplectic Lie groups with an action by a Lie group $G$ which acts via symplectic Lie group automorphisms. In addition to geometry, $\mathfrak{g}$-quasi-Frobenius Lie algebras can also be motivated from the point of view of category theory. Specifically, $\mathfrak{g}$-quasi Frobenius Lie algebras correspond to quasi Frobenius Lie objects in $\mathbf{Rep}(\mathfrak{g})$. If $\mathfrak{g}$ is now equipped with a Lie bialgebra structure, then the categorical formulation of $\overline{G}$-Frobenius algebras given in [16] suggests that the Lie version of a $\overline{G}$-Frobenius algebra is a quasi-Frobenius Lie object in $\mathbf{Rep}(D(\mathfrak{g}))$, where $D(\mathfrak{g})$ is the associated (semiclassical) Drinfeld double. We show that if $\mathfrak{g}$ is a quasitriangular Lie bialgebra, then every $\mathfrak{g}$-quasi-Frobenius Lie algebra has an induced $D(\mathfrak{g})$-action which gives it the structure of a $D(\mathfrak{g})$-quasi-Frobenius Lie algebra. (English) |
Keyword:
|
symplectic Lie groups |
Keyword:
|
quasi-Frobenius Lie algebras |
Keyword:
|
Lie bialgebras |
Keyword:
|
Drinfeld double |
Keyword:
|
group actions |
MSC:
|
18A05 |
MSC:
|
18E05 |
MSC:
|
22E60 |
MSC:
|
22Exx |
MSC:
|
53D05 |
idZBL:
|
Zbl 06674902 |
idMR:
|
MR3610652 |
DOI:
|
10.5817/AM2016-4-233 |
. |
Date available:
|
2016-12-20T21:51:01Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145931 |
. |
Reference:
|
[1] Abrams, L.: Two dimensional topological quantum field theories and Frobenius algebras.J. Knot Theory Ramifications 5 (1996), 569–587. Zbl 0897.57015, MR 1414088, 10.1142/S0218216596000333 |
Reference:
|
[2] Agaoka, Y.: Uniqueness of left invariant symplectic structures on the affine Lie group.Proc. Amer. Math. Soc. 129 (9) (2001), 2753–2762, (electronic). Zbl 1021.53052, MR 1838799, 10.1090/S0002-9939-01-05828-2 |
Reference:
|
[3] Atiyah, M.F.: Topological quantum field theory.Publ. Math. Inst. Hautes Études Sci. 68 (1988), 175–186. MR 1001453, 10.1007/BF02698547 |
Reference:
|
[4] Baues, O., Cortés, V.: Symplectic Lie Groups I–III.arXiv:1307.1629. |
Reference:
|
[5] Boyom, N.: Models for solvable symplectic Lie groups.Indiana Univ. Math. J. 42 (4) (1993), 1149–1168. Zbl 0846.58023, MR 1266088, 10.1512/iumj.1993.42.42053 |
Reference:
|
[6] Burde, D.: Characteristically nilpotent Lie algebras and symplectic structures.Forum Math. 18 (5) (2006), 769–787. Zbl 1206.17009, MR 2265899, 10.1515/FORUM.2006.038 |
Reference:
|
[7] Chari, V., Pressley, A.: A Guide to Quantum Groups.Cambridge University Press, 1994. Zbl 0839.17009, MR 1300632 |
Reference:
|
[8] Chu, B.: Symplectic homogenous spaces.Trans. Amer. Math. Soc. 197 (1974), 145–159. MR 0342642, 10.1090/S0002-9947-1974-0342642-7 |
Reference:
|
[9] Drinfeld, V.G.: Hamiltonian structures on Lie groups, Lie bialgebras, and the geometric meaning of the classical Yang-Baxter equations.Dokl. Akad. Nauk SSSR 268 (2) (1983), 285–287, (Russian). Zbl 0526.58017, MR 0688240 |
Reference:
|
[10] Etingof, P., Schiffman, O.: Lectures on Quantum Groups.Lect. Math. Phys., Int. Press, 1998. MR 1698405 |
Reference:
|
[11] Golubitsky, M., Guillemin, V.: Stable mappings and their singularities.Grad. Texts in Math., vol. 14, Springer, Berlin, 1973. Zbl 0294.58004, MR 0341518, 10.1007/978-1-4615-7904-5_3 |
Reference:
|
[12] Goyvaerts, I., Vercruysse, J.: A Note on the Categorification of Lie Algebras.Lie Theory and Its Applications in Physics, Springer Proceedings in Math. $\&$ Stat., 2013, pp. 541–550. Zbl 1280.17027, MR 3070680 |
Reference:
|
[13] Guillemin, V., Pollack, A.: Differential Topology.Prentice-Hall, 1974. Zbl 0361.57001, MR 0348781 |
Reference:
|
[14] Helgason, S.: Differential Geometry, Lie groups, and Symmetric Spaces.Pure Appl. Math., 1978. Zbl 0451.53038, MR 1834454 |
Reference:
|
[15] Kaufmann, R.: Orbifolding Frobenius algebras.Internat. J. Math. 14 (6) (2003), 573–617. Zbl 1083.57037, MR 1997832, 10.1142/S0129167X03001831 |
Reference:
|
[16] Kaufmann, R., Pham, D.: The Drinfel’d double and twisting in stringy orbifold theory.Internat. J. Math. 20 (5) (2009), 623–657. Zbl 1174.14048, MR 2526310, 10.1142/S0129167X09005431 |
Reference:
|
[17] Kosmann-Schwarzbach, Y.: Poisson-Drinfel’d groups.Publ. Inst. Rech. Math. Av. 5 (12) (1987). |
Reference:
|
[18] Kosmann-Schwarzbach, Y.: Lie Bialgebras, Poisson Lie groups and dressing transformations.Integrability of nonlinear systems (Pondicherry, 1996), vol. 495, Lecture Notes in Phys., 1997, pp. 104–170. Zbl 1078.37517, MR 1636293 |
Reference:
|
[19] Lee, J.: Introduction to Smooth Manifolds.Springer-Verlag, New York Inc., 2003. MR 1930091 |
Reference:
|
[20] Lu, J., Weinstein, A.: Poisson Lie groups, dressing transformations, and Bruhat decompositions.J. Differential Geom. 31 (2) (1990), 501–526. Zbl 0673.58018, MR 1037412, 10.4310/jdg/1214444324 |
Reference:
|
[21] Mikami, K.: Symplectic and Poisson structures on some loop groups.Contemp. Math. 179 (1994), 173–192. Zbl 0820.58021, MR 1319608, 10.1090/conm/179/01940 |
Reference:
|
[22] Ooms, A.: On Lie algebras having a primitive universal enveloping algebra.J. Algebra 32 (1974), 488–500. Zbl 0355.17014, MR 0387365, 10.1016/0021-8693(74)90154-9 |
Reference:
|
[23] Ooms, A.: On Frobenius Lie algebras.Comm. Algebra 8 (1) (1980), 13–52. Zbl 0421.17004, MR 0556091, 10.1080/00927878008822445 |
Reference:
|
[24] Semenov-Tian-Shansky, M.A.: What is a classical $r$-matrix?.Funct. Anal. Appl. 17 (1983), 259–272. 10.1007/BF01076717 |
Reference:
|
[25] Turaev, V.: Homotopy field theory in dimension 2 and group-algebras.arXiv.org:math/9910010, (1999). |
Reference:
|
[26] Vinberg, E.B.: A course in algebra.Graduate Studies in Math., vol. 56, AMS, 2003. Zbl 1016.00003, MR 1974508 |
Reference:
|
[27] Warner, F.: Foundations of Differentiable Manifolds and Lie Groups.Springer, 1983. Zbl 0516.58001, MR 0722297 |
Reference:
|
[28] Witten, E.: Topological quantum field theory.Comm. Math. Phys. 117 (1988), 353–386. Zbl 0656.53078, MR 0953828, 10.1007/BF01223371 |
. |