Previous |  Up |  Next

Article

Title: Structure theory for the group algebra of the symmetric group, with applications to polynomial identities for the octonions (English)
Author: Bremner, Murray R.
Author: Madariaga, Sara
Author: Peresi, Luiz A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 4
Year: 2016
Pages: 413-452
Summary lang: English
.
Category: math
.
Summary: This is a survey paper on applications of the representation theory of the symmetric group to the theory of polynomial identities for associative and nonassociative algebras. In §1, we present a detailed review (with complete proofs) of the classical structure theory of the group algebra $\mathbb{F} S_n$ of the symmetric group $S_n$ over a field $\mathbb{F}$ of characteristic 0 (or $p > n$). The goal is to obtain a constructive version of the isomorphism $\psi\colon \bigoplus_\lambda M_{d_\lambda} (\mathbb{F}) \longrightarrow \mathbb{F} S_n$ where $\lambda$ is a partition of $n$ and $d_\lambda$ counts the standard tableaux of shape $\lambda$. Young showed how to compute $\psi$; to compute its inverse, we use an efficient algorithm for representation matrices discovered by Clifton. In §2, we discuss constructive methods based on §1 which allow us to analyze the polynomial identities satisfied by a specific (non)associative algebra: fill and reduce algorithm, module generators algorithm, Bondari's algorithm for finite dimensional algebras. In §3, we study the multilinear identities satisfied by the octonion algebra $\mathbb{O}$ over a field of characteristic 0. For $n \le 6$ we compare our computational results with earlier work of Racine, Hentzel \&\ Peresi, Shestakov \&\ Zhukavets. Going one step further, we verify computationally that every identity in degree 7 is a consequence of known identities of lower degree; this result is our main original contribution. This gap (no new identities in degree 7) motivates our concluding conjecture: the known identities for $n \le 6$ generate all of the octonion identities in characteristic 0. (English)
Keyword: symmetric group
Keyword: group algebra
Keyword: Young diagrams
Keyword: standard tableaux
Keyword: idempotents
Keyword: matrix units
Keyword: two-sided ideals
Keyword: Wedderburn decomposition
Keyword: representation theory
Keyword: Clifton's algorithm
Keyword: computer algebra
Keyword: polynomial identities
Keyword: nonassociative algebra
Keyword: octonions
MSC: 16R10
MSC: 16S34
MSC: 16Z05
MSC: 17-04
MSC: 17-08
MSC: 17A50
MSC: 17A75
MSC: 17B01
MSC: 17C05
MSC: 17D05
MSC: 18D50
MSC: 20B30
MSC: 20B40
MSC: 20C30
MSC: 20C40
MSC: 68W30
idZBL: Zbl 06674890
idMR: MR3583300
DOI: 10.14712/1213-7243.2015.188
.
Date available: 2017-01-09T22:13:49Z
Last updated: 2019-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145950
.
Reference: [1] Amitsur A., Levitzki J.: Minimal identities for algebras.Proc. Amer. Math. Soc. 1 (1950), 449–463. Zbl 0043.03702, MR 0036751, 10.1090/S0002-9939-1950-0036751-9
Reference: [2] Benanti F., Demmel J., Drensky V., Koev P.: Computational approach to polynomial identities of matrices---a survey.Polynomial Identities and Combinatorial Methods (Pantelleria, 2001), 141–178, Lecture Notes in Pure and Appl. Math., 235, Dekker, New York, 2003. Zbl 1067.16041, MR 2021797
Reference: [3] Bergdolt G.: Tilted irreducible representations of the permutation group.Comput. Phys. Comm. 86 (1995), no. 1–2, 97–104. Zbl 0873.20013, MR 1327568, 10.1016/0010-4655(95)00009-5
Reference: [4] Boerner H.: Representations of Groups. With Special Consideration for the Needs of Modern Physics.(second English edition), North-Holland Publishing Co., Amsterdam-London, American Elsevier Publishing Co., Inc., New York, 1970. Zbl 0167.02601, MR 0272911
Reference: [5] Bondari S.: Constructing the Identities and the Central Identities of Degree $< 9$ of the $n \times n$ Matrices.Ph.D. Thesis, Iowa State University, 1993. http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=11403&context=rtd.
Reference: [6] Bondari S.: Constructing the polynomial identities and central identities of degree $< 9$ of $3 \times 3$ matrices.Linear Algebra Appl. 258 (1997), 233–249. Zbl 0884.15009, MR 1444106
Reference: [7] Bremner M.: Lattice Basis Reduction: An Introduction to the LLL Algorithm and Its Applications.Pure and Applied Mathematics, 300, CRC Press, Boca Raton, 2012. Zbl 1237.68007, MR 2829731
Reference: [8] Bremner M., Dotsenko V.: Algebraic Operads: An Algorithmic Companion.Chapman and Hall/CRC, Boca Raton, 2016. Zbl 1350.18001
Reference: [9] Bremner M., Hentzel I.: Identities for the associator in alternative algebras.J. Symbolic Comput. 33 (2002), no. 3, 255–273. Zbl 0997.17021, MR 1882229, 10.1006/jsco.2001.0510
Reference: [10] Bremner M., Murakami L., Shestakov I.: Nonassociative algebras.Chapter 69 of Handbook of Linear Algebra, edited by Leslie Hogben, Chapman & Hall/CRC, Boca Raton, 2007. MR 2279160
Reference: [11] Bremner M., Peresi L.: Nonhomogeneous subalgebras of Lie and special Jordan superalgebras.J. Algebra 322 (2009), no. 6, 2000–2026. Zbl 1196.17025, MR 2542829, 10.1016/j.jalgebra.2009.06.014
Reference: [12] Bremner M., Peresi L.: An application of lattice basis reduction to polynomial identities for algebraic structures.Linear Algebra Appl. 430 (2009), no. 2–3, 642–659. Zbl 1173.17001, MR 2469318
Reference: [13] Bremner M., Peresi L.: Special identities for quasi-Jordan algebras.Comm. Algebra 39 (2011), no. 7, 2313–2337. Zbl 1241.17032, MR 2821713, 10.1080/00927872.2010.488671
Reference: [14] Clifton J.: Complete sets of orthogonal tableaux.Ph.D. Thesis, Iowa State University, 1980; http://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=7688&context=rtd. MR 2630923
Reference: [15] Clifton J.: A simplification of the computation of the natural representation of the symmetric group $S_n$.Proc. Amer. Math. Soc. 83 (1981), no. 2, 248–250. Zbl 0443.20013, MR 0624907
Reference: [16] Dehn M.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlsysteme.Math. Ann. 85 (1922), no. 1, 184–194. MR 1512061, 10.1007/BF01449618
Reference: [17] Filippov V., Kharchenko V., Shestakov I. (editors): Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules.Nonassociative Algebra and its Applications, 461–516, Lect. Notes Pure Appl. Math., 246, Chapman & Hall/CRC, Boca Raton, 2006; translated by Murray Bremner and Mikhail Kotchetov. http://math.usask.ca/ bremner/research/publications/dniester.pdf. MR 2203726
Reference: [18] Drensky V.: A minimal basis for identities of a second-order matrix algebra over a field of characteristic 0.Algebra Logic 20 (1981), no. 3, 188–194. MR 0648317, 10.1007/BF01669018
Reference: [19] Drensky V., Kasparian A.: Polynomial identities of eighth degree for $3 \times 3$ matrices.Annuaire Univ. Sofia Fac. Math. Méc. 77 (1983), no. 1, 175–195. Zbl 0736.16012, MR 0960570
Reference: [20] Henry F.: Some graded identities of the Cayley-Dickson algebra.arxiv.org/abs/1205.5057, (submitted on 22 May 2012).
Reference: [21] Hentzel I.: Processing identities by group representation.Computers in Nonassociative Rings and Algebras, (Special Session, 82nd Annual Meeting, Amer. Math. Soc., San Antonio, Tex., 1976), pages 13–40, Academic Press, New York, 1977. MR 0463251
Reference: [22] Hentzel I.: Applying group representation to nonassociative algebras.Ring Theory (Proc. Conf., Ohio Univ., Athens, Ohio, 1976), 133–141, Lecture Notes in Pure and Appl. Math., 25, Dekker, New York, 1977. Zbl 0356.17002, MR 0435159
Reference: [23] Hentzel I., Juriaans S., Peresi L.: Polynomial identities of RA and RA2 loop algebras.Comm. Algebra 35 (2007), no. 2, 589–595. Zbl 1132.20043, MR 2294618, 10.1080/00927870601074822
Reference: [24] Hentzel I., Peresi L.: Identities of Cayley-Dickson algebras.J. Algebra 188 (1997), no. 1, 292–309. Zbl 0890.17001, MR 1432358, 10.1006/jabr.1996.6814
Reference: [25] Iltyakov A.: The Specht property of ideals of identities of certain simple nonassociative algebras.Algebra Logic 24 (1985), no. 3, 210–228. 10.1007/BF02080333
Reference: [26] Iltyakov A.: Finiteness of the basis of identities of a finitely generated alternative PI-algebra over a field of characteristic zero.Siberian Math. J. 32 (1991), no. 6, 948–961. Zbl 0749.17043, 10.1007/BF00971199
Reference: [27] Iltyakov A.: On finite basis of identities of Lie algebra representations.Nova J. Algebra Geom. 1 (1992), no. 3, 207–259. Zbl 0892.17007, MR 1218354
Reference: [28] Isaev I.: Identities of a finite Cayley-Dickson algebra.Algebra Logic 23 (1984), no. 4, 407–418. Zbl 0598.17013, MR 0781248, 10.1007/BF02071788
Reference: [29] Jacobson N.: Structure theory for algebraic algebras of bounded degree.Ann. of Math. (2) 46 (1945), 695–707. MR 0014083, 10.2307/1969205
Reference: [30] Juriaans S., Peresi L.: Polynomial identities of RA2 loop algebras.J. Algebra, 213 (1999), no. 2, 557–566. Zbl 0923.17004, MR 1673469, 10.1006/jabr.1998.7675
Reference: [31] Kaplansky I.: Rings with a polynomial identity.Bull. Amer. Math. Soc. 54 (1948), 575–580. Zbl 0032.00701, MR 0025451, 10.1090/S0002-9904-1948-09049-8
Reference: [32] Kemer A.: Finite basability of identities of associative algebras.Algebra Logic 26 (1987), no. 5, 362–397. MR 0985840, 10.1007/BF01978692
Reference: [33] Kemer A.: Ideals of Identities of Associative Algebras.Translations of Mathematical Monographs, 87, American Mathematical Society, Providence, 1991. Zbl 0732.16001, MR 1108620
Reference: [34] Kleinfeld E.: Simple alternative rings.Ann. of Math. 58 (1953), no. 2, 544–547. Zbl 0066.28402, MR 0058581, 10.2307/1969753
Reference: [35] Knuth D.: The Art of Computer Programming.vol. 3: Sorting and Searching, (second edition), Addison-Wesley, Reading, 1998. Zbl 1178.68372, MR 3077154
Reference: [36] Koshlukov P.: Algebras with polynomial identities.15th School of Algebra, Canela, Brazil, 1998. Mat. Contemp. 16 (1999), 137–186. Zbl 0976.16019, MR 1756833
Reference: [37] Leron U.: Multilinear identities of the matrix ring.Trans. Amer. Math. Soc. 183 (1973), 175–202. Zbl 0278.16011, MR 0332873, 10.1090/S0002-9947-1973-0332873-3
Reference: [38] Malcev A.: On algebras defined by identities.Mat. Sbornik N.S. 26(68) (1950), 19–33. MR 0033280
Reference: [39] Novelli J., Pak I., Stoyanovskii A.: A direct bijective proof of the hook-length formula.Discrete Math. Theor. Comput. Sci. 1 (1997) no. 1, 53–67. Zbl 0934.05125, MR 1605030
Reference: [40] Racine M.: Minimal identities for Jordan algebras of degree 2.Comm. Algebra 13 (1985), no. 12, 2493–2506. Zbl 0579.17014, MR 0811520, 10.1080/00927878508823287
Reference: [41] Racine M.: Minimal identities of octonion algebras.J. Algebra 115 (1988), no. 1, 251–260. Zbl 0651.17012, MR 0937613, 10.1016/0021-8693(88)90294-3
Reference: [42] Razmyslov Y.: Identities of Algebras and Their Representations.Translations of Mathematical Monographs, 138, American Mathematical Society, Providence, 1994. Zbl 0827.17001, MR 1291603
Reference: [43] Regev A.: The representations of $S_n$ and explicit identities for P.I. algebras.J. Algebra 51 (1978), no. 1, 25–40. Zbl 0374.16009, MR 0469965, 10.1016/0021-8693(78)90133-3
Reference: [44] Regev A.: On the Codimensions of Matrix Algebras.Algebra --- Some Current Trends, Varna, 1986, 162–172, Lecture Notes in Math., 1352, Springer, Berlin, 1988. Zbl 0676.16016, MR 0981825
Reference: [45] Rutherford D.: Substitutional Analysis.Edinburgh, at the University Press, 1948. Zbl 0174.31202, MR 0027272
Reference: [46] Shestakov I.: Associative identities of octonions.Algebra Logic 49 (2011), no. 6, 561–565. Zbl 1248.17002, MR 2829611, 10.1007/s10469-011-9118-9
Reference: [47] Shestakov I., N. Zhukavets: Skew-symmetric identities of octonions.J. Pure Appl. Algebra 213 (2009), no. 4, 479–492. Zbl 1241.17033, MR 2483833, 10.1016/j.jpaa.2008.07.012
Reference: [48] Specht W.: Gesetze in Ringen I..Math. Z. 52 (1950), 557–589. Zbl 0032.38901, MR 0035274
Reference: [49] Vaĭs A., Zel'manov E.: Kemer's theorem for finitely generated Jordan algebras.Soviet Math. (Iz. VUZ) 33 (1989), no. 6, 38–47. MR 1017777
Reference: [50] van der Waerden B.: Algebra, Vol. II.Based in part on lectures by E. Artin and E. Noether, Springer, New York, 1991. MR 1080173
Reference: [51] Wagner W.: Über die Grundlagen der projektiven Geometrie und allgemeine Zahlensysteme.Math. Ann. 113 (1937), no. 1, 528–567. Zbl 0015.17002, MR 1513106, 10.1007/BF01571649
Reference: [52] Young A.: The Collected Papers of Alfred Young (1873–1940).With a foreword by G. de B. Robinson and a biography by H.W. Turnbull, Mathematical Expositions, 21, University of Toronto Press, Toronto, Ont., Buffalo, N.Y., 1977. MR 0439548
Reference: [53] Zhevlakov K., Slin'ko A., Shestakov I., Shirshov A.: Rings That Are Nearly Associative.Pure and Applied Mathematics, 104, Academic Press, Inc., New York-London, 1982; translated by Harry F. Smith. Zbl 0487.17001, MR 0668355
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-4_2.pdf 513.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo