Previous |  Up |  Next

Article

Title: Moufang loops of order coprime to three that cyclically extend groups of dihedral type (English)
Author: Drápal, Aleš
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 57
Issue: 4
Year: 2016
Pages: 453-500
Summary lang: English
.
Category: math
.
Summary: This paper completely solves the isomorphism problem for Moufang loops $Q = GC$ where $G\unlhd Q$ is a noncommutative group with cyclic subgroup of index two and $|Z(G)| \le 2$, $C$ is cyclic, $G\cap C = 1$, and $Q$ is finite of order coprime to three. (English)
Keyword: dihedral group
Keyword: Moufang loop
Keyword: cyclic extension
Keyword: semidirect product
MSC: 20N05
idZBL: Zbl 1374.20069
idMR: MR3583301
DOI: 10.14712/1213-7243.2015.187
.
Date available: 2017-01-09T22:14:29Z
Last updated: 2019-01-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145952
.
Reference: [1] Chein O.: Moufang loops of small order, I..Trans. Amer. Math. Soc. 188 (1974), 31–51. Zbl 0286.20088, MR 0330336, 10.1090/S0002-9947-1974-0330336-3
Reference: [2] Chein O.: Moufang loops of small order.Mem. Amer. Math. Soc. 13 (1978), no. 197. Zbl 0378.20053, MR 0466391
Reference: [3] Drápal A.: On extensions of Moufang loops by a cyclic factor that is coprime to three.Comm. Algebra, (in print) http://dx.doi.org/10.1080/00927872.2016.1233202. 10.1080/00927872.2016.1233202
Reference: [4] Gagola S.M., III: Cyclic extensions of Moufang loops induced by semi-automorphisms.J. Algebra Appl. 13 (2014), no. 4, Article ID 1350128. Zbl 1296.20028, MR 3153863, 10.1142/S0219498813501284
Reference: [5] Gagola S.hM., III: Describing cyclic extensions of Bol loops.Quasigroups and Related Systems 23 (2015), 31–39. Zbl 1328.20084, MR 3353111
Reference: [6] Goodaire E.R., May S., Raman M.: The Moufang Loops of Order Less Than 64.Nova Science Publishers, Inc., Commack, NY, 1999. Zbl 0964.20043, MR 1689624
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_57-2016-4_3.pdf 593.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo