Previous |  Up |  Next

Article

Title: On admissibility of linear estimators in models with finitely generated parameter space (English)
Author: Synówka-Bejenka, Ewa
Author: Zontek, Stefan
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 724-734
Summary lang: English
.
Category: math
.
Summary: The paper refers to the research on the characterization of admissible estimators initiated by Cohen [2]. In our paper it is proved that for linear models with finitely generated parameter space the limit of a sequence of the unique locally best linear estimators is admissible. This result is used to give a characterization of admissible linear estimators of fixed and random effects in a random linear model for spatially located sensors measuring intensity of a source of signals in discrete instants of time. (English)
Keyword: linear model
Keyword: linear estimation
Keyword: linear prediction
Keyword: admissibility
Keyword: admissibility among an affine set
Keyword: locally best estimator
MSC: 62F10
MSC: 62J10
idZBL: Zbl 06674936
idMR: MR3602012
DOI: 10.14736/kyb-2016-5-0724
.
Date available: 2017-01-02T13:26:35Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145965
.
Reference: [1] Baksalary, J. K., Markiewicz, A.: Admissible linear estimators in the general Gauss-Markov model..J. Statist. Plann. Inference 19 (1988), 349-359. Zbl 0656.62076, MR 0955399, 10.1016/0378-3758(88)90042-0
Reference: [2] Cohen, A.: All admissible estimates of the mean vector..Ann. Math. Statist. 37 (1966), 458-463. MR 0189164, 10.1214/aoms/1177699528
Reference: [3] Gnot, S., Kleffe, J.: Quadratic estimation in mixed linear models with two variance components..J. Statist. Plann. Inference 8 (1983), 267-279. Zbl 0561.62064, MR 0729245, 10.1016/0378-3758(83)90045-9
Reference: [4] Gnot, S., Rafajłowicz, E., Urbańska-Motyka, A.: Statistical inference in linear model for spatially located sensors and random inputs..Ann. Inst. Statist Math. 53 (2001), 370-379. MR 1841142, 10.1023/a:1012426923971
Reference: [5] Goldberger, A. S.: Best linear unbiased prediction in the generalized linear regression model..J. Amer. Statist. Assoc. 57 (1962), 369-375. Zbl 0124.35502, MR 0143295, 10.1080/01621459.1962.10480665
Reference: [6] Gro{\ss}, J., Markiewicz, A.: Characterization of admissible linear estimators in the linear model..Linear Algebra Appl. 388 (2004), 239-248. MR 2077862, 10.1016/s0024-3795(03)00459-2
Reference: [7] Harville, D. A.: Extension of the Gauss-Markov theorem to include the estimation of random effects..Ann. Statist. 2 (1976), 384-395. Zbl 0323.62043, MR 0398007, 10.1214/aos/1176343414
Reference: [8] Henderson, C. R.: Estimation of genetic parameters (abstract)..Ann. Math. Statist. 21 (1950), 309-310.
Reference: [9] Henderson, C. R.: Selection index and expected genetic advance..In: Statistical Genetics and Plant Breeding (W. D. Hanson and H. F. Robinson, eds.), NAS-NRC 982, Washington 1963, pp. 141-163.
Reference: [10] Jiang, J.: A derivation of BLUP-Best linear unbiased predictor..Statist. Probab. Lett. 32 (1997), 321-324. Zbl 0886.62066, MR 1440842, 10.1016/s0167-7152(96)00089-2
Reference: [11] Klonecki, W., Zontek, S.: On the structure of admissible linear estimators..J. Multivariate Anal. 24 (1988), 11-30. Zbl 0664.62008, MR 0925126, 10.1016/0047-259x(88)90098-x
Reference: [12] LaMotte, L. R.: Admissibility in linear estimation..Ann. Statist. 10 (1982), 245-255. Zbl 0485.62070, MR 0642736, 10.1214/aos/1176345707
Reference: [13] LaMotte, L. R.: On limits of uniquely best linear estimators..Metrika 45 (1997), 197-211. MR 1452063, 10.1007/bf02717103
Reference: [14] Liu, X. Q., Rong, J. Y., Liu, X. Y.: Best linear unbiased prediction for linear combinations in general mixed linear models..J. Multivariate Anal. 99 (2008), 1503-1517. Zbl 1144.62047, MR 2444809, 10.1016/j.jmva.2008.01.004
Reference: [15] Olsen, A., Seely, J., Birkes, D.: Invariant quadratic unbiased estimation for two variance components..Ann. Statist. 4 (1976), 878-890. Zbl 0344.62060, MR 0418345, 10.1214/aos/1176343586
Reference: [16] Rao, C. R.: Estimation of parameters in a linear model..Ann. Statist. 4 (1976), 1023-1037. Zbl 0421.62047, MR 0420979, 10.1214/aos/1176343639
Reference: [17] Rao, C. R.: Estimation in linear models with mixed effects: a unified theory..In: Proc. Second International Tampere Conference in Statistics (T. Pukkila and S. Puntanen, eds.), Dept. of Mathematical Sciences, Univ. of Tampere, Tampere 1987, pp. 73-98.
Reference: [18] Robinson, G. K.: That BLUP is a good thing-the estimation of random effects..Statist. Sci. 6 (1991), 15-51. Zbl 0955.62500, MR 1108815, 10.1214/ss/1177011933
Reference: [19] Shiqing, W., Ying, M., Zhijun, F.: Integral expression form of admissible linear estimators of effects in linear mixed models..In: Proc. 2010 International Conference on Computing, Control and Industrial Engineering, IEEE, Wuhan 2010, pp. 56-60. 10.1109/ccie.2010.133
Reference: [20] Stępniak, C.: On admissible estimators in a linear model..Biometrical J. 26 (1984), 815-816. Zbl 0565.62042, MR 0775200, 10.1002/bimj.4710260725
Reference: [21] Stępniak, C.: A complete class for linear estimation in a general linear model..Ann. Inst. Statist. Math. A 39 (1987), 563-573. Zbl 0691.62010, MR 0930530, 10.1007/bf02491490
Reference: [22] Stępniak, C.: Admissible invariant esimators in a linear model..Kybernetika 50 (2014), 310-321. MR 3245533, 10.14736/kyb-2014-3-0310
Reference: [23] Synówka-Bejenka, E., Zontek, S.: A characterization of admissible linear estimators of fixed and random effects in linear models..Metrika 68 (2008), 157-172. MR 2434311, 10.1007/s00184-007-0149-0
Reference: [24] Tian, Y.: A new derivation of BLUPs under random-effects model..Metrika 78 (2015), 905-918. Zbl 1329.62264, MR 3407588, 10.1007/s00184-015-0533-0
Reference: [25] Zontek, S.: On characterization of linear admissible estimators: an extension of a result due to C. R. Rao..J. Multivariate Anal. 23 (1987), 1-12. Zbl 0647.62062, MR 0911790, 10.1016/0047-259x(87)90174-6
Reference: [26] Zontek, S.: Admissibility of limits of the unique locally best linear estimators with application to variance components models..Probab. Math. Statist. 9 (1988), 29-44. Zbl 0674.62008, MR 0985523
.

Files

Files Size Format View
Kybernetika_52-2016-5_4.pdf 318.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo