Previous |  Up |  Next

Article

Title: On convergence of kernel density estimates in particle filtering (English)
Author: Coufal, David
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 735-756
Summary lang: English
.
Category: math
.
Summary: The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time. (English)
Keyword: particle filter
Keyword: kernel methods
Keyword: Fourier analysis
MSC: 65C35
idZBL: Zbl 06674937
idMR: MR3602013
DOI: 10.14736/kyb-2016-5-0735
.
Date available: 2017-01-02T13:27:45Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145966
.
Reference: [1] Brabec, J., Hrůza, B.: Matematická analýza II (Mathematical Analysis II, in Czech)..SNTL/ALFA, 1986.
Reference: [2] Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners..IEEE Trans. Signal Processing 50 (2002), 3, 736-746. MR 1895071, 10.1109/78.984773
Reference: [3] Crisan, D., Míguez, J.: Particle-kernel estimation of the filter density in state-space models..Bernoulli 20 (2014), 4, 1879-1929. Zbl 1346.60112, MR 3263093, 10.3150/13-bej545
Reference: [4] Doucet, A., Freitas, N. de, (Eds.), N. Gordon: Sequential Monte Carlo Methods in Practice..Springer-Verlag, New York 2001. Zbl 0967.00022, MR 1847783, 10.1007/978-1-4757-3437-9
Reference: [5] Doucet, A., Johansen, A. M.: A tutorial on particle filtering and smoothing: fifteen years later..In: The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.), Oxford University Press, 2011.
Reference: [6] Fristedt, B., Jain, N., Krylov, N.: Filtering and Prediction: A Primer..American Mathematical Society, 2007. Zbl 1165.62070, MR 2337747, 10.1090/stml/038
Reference: [7] Givens, G. H.: Consistency of the local kernel density estimator..Statist. Probab. Lett. 25 (1995), 55-61. Zbl 0838.62026, MR 1364818, 10.1016/0167-7152(94)00205-m
Reference: [8] Heine, K., Crisan, D.: Uniform approximations of discrete-time filters..Adv. Appl. Probab. 40 (2008), 4, 979-1001. Zbl 1155.93039, MR 2488529, 10.1239/aap/1231340161
Reference: [9] Hürzeler, M., Künsch, H. R.: Monte Carlo approximations for general state-space models..J. Comput. Graph. Statist. 7 (1998), 2, 175-193. MR 1649366, 10.2307/1390812
Reference: [10] Künsch, H. R.: Recursive Monte Carlo filters: Algorithms and theoretical bounds..Ann. Statist. 33 (2005), 5, 1983-2021. MR 2211077, 10.1214/009053605000000426
Reference: [11] Gland, F. Le, Oudjane, N.: Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters..Ann. Appl. Probab. 14 (2004), 1, 144-187. Zbl 1060.93094, MR 2023019, 10.1214/aoap/1075828050
Reference: [12] Moral, P. Del, Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms..Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 37 (2001), 2, 155-194. MR 1819122, 10.1016/s0246-0203(00)01064-5
Reference: [13] Musso, C., Oudjane, N., Gland, F. Le: Improving regularised particle filters..In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.), Chapter 12, Springer 2001, pp. 247-272. Zbl 1056.93588, MR 1847795, 10.1007/978-1-4757-3437-9_12
Reference: [14] Parzen, E.: On estimation of a probability density function and mode..Ann. Math. Statist. 33 (1962), 3, 1065-1076. Zbl 0116.11302, MR 0143282, 10.1214/aoms/1177704472
Reference: [15] Särkkä, S.: Bayesian Filtering and Smoothing..Cambridge University Press, 2013. Zbl 1274.62021, MR 3154309
Reference: [16] Silverman, B. W.: Density Estimation for Statistics and Data Analysis..Chapman and Hall/CRC, London, New York 1986. Zbl 0617.62042, MR 0848134, 10.1007/978-1-4899-3324-9
Reference: [17] Tsybakov, A. B.: Introduction to Nonparametric Estimation..Springer, 2009. Zbl 1176.62032, MR 2724359, 10.1007/b13794
Reference: [18] Wand, M. P., Jones, M. C.: Kernel Smoothing..Chapman and Hall/CRC, London, New York 1995. Zbl 0854.62043, MR 1319818, 10.1007/978-1-4899-4493-1
.

Files

Files Size Format View
Kybernetika_52-2016-5_5.pdf 415.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo