Title:
|
Antiassociative groupoids (English) |
Author:
|
Braitt, Milton |
Author:
|
Hobby, David |
Author:
|
Silberger, Donald |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
142 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
27-46 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Given a groupoid $\langle G, \star \rangle $, and $k \geq 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. \endgraf We prove that for every $k \geq 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal. (English) |
Keyword:
|
groupoid |
Keyword:
|
unification |
MSC:
|
08A99 |
MSC:
|
20N02 |
MSC:
|
68Q99 |
MSC:
|
68R15 |
MSC:
|
68T15 |
idZBL:
|
Zbl 06738568 |
idMR:
|
MR3619985 |
DOI:
|
10.21136/MB.2017.0006-15 |
. |
Date available:
|
2017-02-21T17:20:50Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146007 |
. |
Reference:
|
[1] Baader, F., Snyder, W.: Unification theory.Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). Zbl 1011.68126, 10.1016/B978-044450813-3/50010-2 |
Reference:
|
[2] Braitt, M. S., Hobby, D., Silberger, D.: Completely dissociative groupoids.Math. Bohem. 137 (2012), 79-97. Zbl 1249.20075, MR 2978447 |
Reference:
|
[3] Braitt, M. S., Silberger, D.: Subassociative groupoids.Quasigroups Relat. Syst. 14 (2006), 11-26. Zbl 1123.20059, MR 2268823 |
Reference:
|
[4] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78 Springer, New York (1981). Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3_3 |
Reference:
|
[5] Drápal, A., Kepka, T.: Sets of associative triples.Eur. J. Comb. 6 (1985), 227-231. Zbl 0612.05003, MR 0818596, 10.1016/S0195-6698(85)80032-9 |
Reference:
|
[6] Herbrand, J.: Recherches sur la théorie de la démonstration.Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. Zbl 56.0824.02, MR 3532972 |
Reference:
|
[7] Huet, G. P.: Résolution d'équations dans des langages d'ordre $1,2,\dots,\omega$.Thèse d'État, Université de Paris VII (1976), French. |
Reference:
|
[8] Ježek, J., Kepka, T.: Medial groupoids.Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. Zbl 0527.20044, MR 0734873 |
Reference:
|
[9] Knuth, D. E.: The Art of Computer Programming. Vol. 1: Fundamental Algorithms.Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). Zbl 0191.17903, MR 0286317 |
Reference:
|
[10] Robinson, J. A.: A machine-oriented logic based on the resolution principle.J. Assoc. Comput. Mach. 12 (1965), 23-41. Zbl 0139.12303, MR 0170494, 10.1145/321250.321253 |
Reference:
|
[11] Stanley, R. P.: Enumerative Combinatorics. Vol. 2.Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589 |
. |