Previous |  Up |  Next

Article

Title: Antiassociative groupoids (English)
Author: Braitt, Milton
Author: Hobby, David
Author: Silberger, Donald
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 1
Year: 2017
Pages: 27-46
Summary lang: English
.
Category: math
.
Summary: Given a groupoid $\langle G, \star \rangle $, and $k \geq 3$, we say that $G$ is antiassociative if an only if for all $x_1, x_2, x_3 \in G$, $(x_1 \star x_2) \star x_3$ and $x_1 \star (x_2 \star x_3)$ are never equal. Generalizing this, $\langle G, \star \rangle $ is $k$-antiassociative if and only if for all $x_1, x_2, \ldots , x_k \in G$, any two distinct expressions made by putting parentheses in $x_1 \star x_2 \star x_3 \star \cdots \star x_k$ are never equal. \endgraf We prove that for every $k \geq 3$, there exist finite groupoids that are $k$-antiassociative. We then generalize this, investigating when other pairs of groupoid terms can be made never equal. (English)
Keyword: groupoid
Keyword: unification
MSC: 08A99
MSC: 20N02
MSC: 68Q99
MSC: 68R15
MSC: 68T15
idZBL: Zbl 06738568
idMR: MR3619985
DOI: 10.21136/MB.2017.0006-15
.
Date available: 2017-02-21T17:20:50Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146007
.
Reference: [1] Baader, F., Snyder, W.: Unification theory.Handbook of Automated Reasoning A. Robinson et al. North-Holland/Elsevier, Amsterdam, MIT Press Cambridge 445-533 (2001). Zbl 1011.68126, 10.1016/B978-044450813-3/50010-2
Reference: [2] Braitt, M. S., Hobby, D., Silberger, D.: Completely dissociative groupoids.Math. Bohem. 137 (2012), 79-97. Zbl 1249.20075, MR 2978447
Reference: [3] Braitt, M. S., Silberger, D.: Subassociative groupoids.Quasigroups Relat. Syst. 14 (2006), 11-26. Zbl 1123.20059, MR 2268823
Reference: [4] Burris, S., Sankappanavar, H. P.: A Course in Universal Algebra.Graduate Texts in Mathematics 78 Springer, New York (1981). Zbl 0478.08001, MR 0648287, 10.1007/978-1-4613-8130-3_3
Reference: [5] Drápal, A., Kepka, T.: Sets of associative triples.Eur. J. Comb. 6 (1985), 227-231. Zbl 0612.05003, MR 0818596, 10.1016/S0195-6698(85)80032-9
Reference: [6] Herbrand, J.: Recherches sur la théorie de la démonstration.Travaux de la Société des Sciences et des Lettres de Varsovie 33 128 pages (1930), French. Zbl 56.0824.02, MR 3532972
Reference: [7] Huet, G. P.: Résolution d'équations dans des langages d'ordre $1,2,\dots,\omega$.Thèse d'État, Université de Paris VII (1976), French.
Reference: [8] Ježek, J., Kepka, T.: Medial groupoids.Rozpr. Cesk. Akad. Ved, Rada Mat. Prir. Ved 93 (1983), 93 pages. Zbl 0527.20044, MR 0734873
Reference: [9] Knuth, D. E.: The Art of Computer Programming. Vol. 1: Fundamental Algorithms.Addison-Wesley Series in Computer Science and Information Processing Addison-Wesley, London (1968). Zbl 0191.17903, MR 0286317
Reference: [10] Robinson, J. A.: A machine-oriented logic based on the resolution principle.J. Assoc. Comput. Mach. 12 (1965), 23-41. Zbl 0139.12303, MR 0170494, 10.1145/321250.321253
Reference: [11] Stanley, R. P.: Enumerative Combinatorics. Vol. 2.Cambridge Studies in Advanced Mathematics 62 Cambridge University Press, Cambridge (1999). Zbl 0928.05001, MR 1676282, 10.1017/CBO9780511609589
.

Files

Files Size Format View
MathBohem_142-2017-1_4.pdf 369.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo