Previous |  Up |  Next

Article

Title: Practical Ulam-Hyers-Rassias stability for nonlinear equations (English)
Author: Wang, Jin Rong
Author: Fečkan, Michal
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 1
Year: 2017
Pages: 47-56
Summary lang: English
.
Category: math
.
Summary: In this paper, we offer a new stability concept, practical Ulam-Hyers-Rassias stability, for nonlinear equations in Banach spaces, which consists in a restriction of Ulam-Hyers-Rassias stability to bounded subsets. We derive some interesting sufficient conditions on practical Ulam-Hyers-Rassias stability from a nonlinear functional analysis point of view. Our method is based on solving nonlinear equations via homotopy method together with Bihari inequality result. Then we consider nonlinear equations with surjective asymptotics at infinity. Moore-Penrose inverses are used for equations defined on Hilbert spaces. Specific practical Ulam-Hyers-Rassias results are derived for finite-dimensional equations. Finally, two examples illustrate our theoretical results. (English)
Keyword: practical Ulam-Hyers-Rassias stability
Keyword: nonlinear equation
MSC: 39B82
MSC: 46T20
MSC: 47H10
MSC: 47H99
MSC: 47J05
idZBL: Zbl 06738569
idMR: MR3619986
DOI: 10.21136/MB.2017.0058-14
.
Date available: 2017-02-21T17:21:22Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146008
.
Reference: [1] Allgower, E. L., Georg, K.: Numerical Continuation Methods. An Introduction.Springer Series in Computational Mathematics 13 Springer, Berlin (1990). Zbl 0717.65030, MR 1059455, 10.1007/978-3-642-61257-2
Reference: [2] András, S., Mészáros, A. R.: Ulam-Hyers stability of dynamic equations on time scales via Picard operators.Appl. Math. Comput. 219 (2013), 4853-4864. Zbl 06447292, MR 3001534, 10.1016/j.amc.2012.10.115
Reference: [3] Ben-Israel, A., Greville, T. N. E.: Generalized Inverses. Theory and Applications.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003). Zbl 1026.15004, MR 1987382, 10.1007/b97366
Reference: [4] Berger, M. S.: Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis.Pure and Applied Mathematics 74 Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1977). Zbl 0368.47001, MR 0488101
Reference: [5] Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations.Acta Math. Acad. Sci. Hung. 7 (1956), 81-94. Zbl 0070.08201, MR 0079154, 10.1007/BF02022967
Reference: [6] Burger, M., Ozawa, N., Thom, A.: On Ulam stability.Isr. J. Math. 193 (2013), 109-129. Zbl 1271.22003, MR 3038548, 10.1007/s11856-012-0050-z
Reference: [7] Cădariu, L.: Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale.Univ. Vest Timişoara Timişoara (2007).
Reference: [8] Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory.Grundlehren der Mathematischen Wissenschaften 251. A Series of Comprehensive Studies in Mathematics Springer, New York (1982). Zbl 0487.47039, MR 0660633, 10.1007/978-1-4613-8159-4
Reference: [9] Cimpean, D. S., Popa, D.: Hyers-Ulam stability of Euler's equation.Appl. Math. Lett. 24 (2011), 1539-1543. Zbl 1225.35051, MR 2803705, 10.1016/j.aml.2011.03.042
Reference: [10] Hegyi, B., Jung, S.-M.: On the stability of Laplace's equation.Appl. Math. Lett. 26 (2013), 549-552. Zbl 1266.35014, MR 3027761, 10.1016/j.aml.2012.12.014
Reference: [11] Hyers, D. H.: On the stability of the linear functional equation.Proc. Natl. Acad. Sci. USA 27 (1941), 222-224. Zbl 0061.26403, MR 0004076, 10.1073/pnas.27.4.222
Reference: [12] Hyers, D. H., Isac, G., Rassias, T. M.: Stability of Functional Equations in Several Vari- ables.Progress in Nonlinear Differential Equations and Their Applications 34 Birkhäuser, Boston (1998). Zbl 0907.39025, MR 1639801, 10.1007/978-1-4612-1790-9
Reference: [13] Jung, S.-M.: Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis.The Hadronic Press Mathematics Series. Hadronic Press, Palm Harbor (2001). Zbl 0980.39024, MR 1841182
Reference: [14] Lakshmikantham, V., Leela, S., Martynyuk, A. A.: Practical Stability of Nonlinear Systems.World Scientific, Singapore (1990). Zbl 0753.34037, MR 1089428
Reference: [15] Lungu, N., Popa, D.: Hyers-Ulam stability of a first order partial differential equation.J. Math. Anal. Appl. 385 (2012), 86-91. Zbl 1236.39030, MR 2832076, 10.1016/j.jmaa.2011.06.025
Reference: [16] Park, C.: Hyers-Ulam-Rassias stability of homomorphisms in quasi-Banach algebras.Bull. Sci. Math. 132 (2008), 87-96. Zbl 1140.39016, MR 2387819, 10.1016/j.bulsci.2006.07.004
Reference: [17] Popa, D., Raşa, I.: On the Hyers-Ulam stability of the linear differential equation.J. Math. Anal. Appl. 381 (2011), 530-537. Zbl 1222.34069, MR 2802090, 10.1016/j.jmaa.2011.02.051
Reference: [18] Rassias, T. M.: On the stability of the linear mapping in Banach spaces.Proc. Am. Math. Soc. 72 (1978), 297-300. Zbl 0398.47040, MR 0507327, 10.1090/S0002-9939-1978-0507327-1
Reference: [19] Rus, I. A.: Ulam stabilities of ordinary differential equations in a Banach space.Carpathian J. Math. 26 (2010), 103-107. Zbl 1224.34164, MR 2676724
Reference: [20] Seydel, R.: Practical Bifurcation and Stability Analysis.Interdisciplinary Applied Mathematics 5 Springer, New York (2010). Zbl 1195.34004, MR 2561077, 10.1007/978-1-4419-1740-9
Reference: [21] Taylor, A. E., Lay, D. C.: Introduction to Functional Analysis.John Wiley & Sons, New York (1980). Zbl 0501.46003, MR 0564653
Reference: [22] Ulam, S. M.: A Collection of Mathematical Problems.Interscience Tracts in Pure and Applied Mathematics 8 Interscience Publishers, New York (1960). Zbl 0086.24101, MR 0120127
Reference: [23] Wang, J., Fečkan, M.: Ulam-Hyers-Rassias stability for semilinear equations.Discontin. Nonlinearity Complex 3 (2014), 379-388. Zbl 06459714, 10.5890/DNC.2014.12.002
Reference: [24] Wang, J., Fečkan, M., Zhou, Y.: Ulam's type stability of impulsive ordinary differential equations.J. Math. Anal. Appl. 395 (2012), 258-264. Zbl 1254.34022, MR 2943620, 10.1016/j.jmaa.2012.05.040
Reference: [25] Wei, Y., Ding, J.: Representations for Moore-Penrose inverses in Hilbert spaces.Appl. Math. Lett. 14 (2001), 599-604. Zbl 0982.47003, MR 1832670, 10.1016/S0893-9659(00)00200-7
.

Files

Files Size Format View
MathBohem_142-2017-1_5.pdf 274.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo