[3] Ben-Israel, A., Greville, T. N. E.:
Generalized Inverses. Theory and Applications. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 15 Springer, New York (2003).
DOI 10.1007/b97366 |
MR 1987382 |
Zbl 1026.15004
[4] Berger, M. S.:
Nonlinearity and Functional Analysis. Lectures on Nonlinear Problems in Mathematical Analysis. Pure and Applied Mathematics 74 Academic Press (Harcourt Brace Jovanovich, Publishers), New York (1977).
MR 0488101 |
Zbl 0368.47001
[7] Cădariu, L.: Stabilitatea Ulam-Hyers-Bourgin pentru ecuatii functionale. Univ. Vest Timişoara Timişoara (2007).
[13] Jung, S.-M.:
Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis. The Hadronic Press Mathematics Series. Hadronic Press, Palm Harbor (2001).
MR 1841182 |
Zbl 0980.39024
[14] Lakshmikantham, V., Leela, S., Martynyuk, A. A.:
Practical Stability of Nonlinear Systems. World Scientific, Singapore (1990).
MR 1089428 |
Zbl 0753.34037
[19] Rus, I. A.:
Ulam stabilities of ordinary differential equations in a Banach space. Carpathian J. Math. 26 (2010), 103-107.
MR 2676724 |
Zbl 1224.34164
[21] Taylor, A. E., Lay, D. C.:
Introduction to Functional Analysis. John Wiley & Sons, New York (1980).
MR 0564653 |
Zbl 0501.46003
[22] Ulam, S. M.:
A Collection of Mathematical Problems. Interscience Tracts in Pure and Applied Mathematics 8 Interscience Publishers, New York (1960).
MR 0120127 |
Zbl 0086.24101