Previous |  Up |  Next

Article

Title: On invariant subspaces for polynomially bounded operators (English)
Author: Liu, Junfeng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 1-9
Summary lang: English
.
Category: math
.
Summary: We discuss the invariant subspace problem of polynomially bounded operators on a Banach space and obtain an invariant subspace theorem for polynomially bounded operators. At the same time, we state two open problems, which are relative propositions of this invariant subspace theorem. By means of the two relative propositions (if they are true), together with the result of this paper and the result of C. Ambrozie and V. Müller (2004) one can obtain an important conclusion that every polynomially bounded operator on a Banach space whose spectrum contains the unit circle has a nontrivial invariant closed subspace. This conclusion can generalize remarkably the famous result that every contraction on a Hilbert space whose spectrum contains the unit circle has a nontrivial invariant closed subspace (1988 and 1997). (English)
Keyword: polynomially bounded operator
Keyword: invariant subspace
MSC: 47A15
idZBL: Zbl 06738500
idMR: MR3632994
DOI: 10.21136/CMJ.2017.0459-14
.
Date available: 2017-03-13T12:03:18Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146034
.
Reference: [1] Ambrozie, C., Müller, V.: Invariant subspaces for polynomially bounded operators.J. Funct. Anal. 213 (2004), 321-345. Zbl 1056.47006, MR 2078629, 10.1016/j.jfa.2003.12.004
Reference: [2] Beauzamy, B.: Introduction to Operator Theory and Invariant Subspaces.North-Holland Mathematical Library 42, North-Holland, Amsterdam (1988). Zbl 0663.47002, MR 0967989
Reference: [3] Brown, S. W., Chevreau, B., Pearcy, C.: On the structure of contraction operators. II.J. Funct. Anal. 76 (1988), 30-55. Zbl 0641.47013, MR 0923043, 10.1016/0022-1236(88)90047-X
Reference: [4] Chalendar, I., Partington, J. R.: Modern Approaches to the Invariant-Subspace Problem.Cambridge Tracts in Mathematics 188, Cambridge University Press, Cambridge (2011). Zbl 1231.47005, MR 2841051
Reference: [5] Jiang, J.: Bounded Operators without Invariant Subspaces on Certain Banach Spaces.Thesis (Ph.D.), The University of Texas at Austin, ProQuest LLC, Ann Arbor (2001). MR 2702823
Reference: [6] Laursen, K. B., Neumann, M. M.: An Introduction to Local Spectral Theory.London Mathematical Society Monographs. New Series 20, Clarendon Press, Oxford (2000). Zbl 0957.47004, MR 1747914
Reference: [7] Lomonosov, V.: An extension of Burnside's theorem to infinite-dimensional spaces.Isr. J. Math. 75 (1991), 329-339. Zbl 0777.47005, MR 1164597, 10.1007/BF02776031
Reference: [8] Pisier, G.: A polynomially bounded operator on Hilbert space which is not similar to a contraction.J. Am. Math. Soc. 10 (1997), 351-369. Zbl 0869.47014, MR 1415321, 10.1090/S0894-0347-97-00227-0
Reference: [9] Rudin, W.: Function Theory in the Unit Ball of $C^n$.Grundlehren der mathematischen Wissenschaften 241, Springer, Berlin (1980). Zbl 03779725, MR 0601594, 10.1007/978-3-540-68276-9
.

Files

Files Size Format View
CzechMathJ_67-2017-1_1.pdf 255.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo