Title:
|
On solutions set of a multivalued stochastic differential equation (English) |
Author:
|
Malinowski, Marek T. |
Author:
|
Agarwal, Ravi P. |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
11-28 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded. (English) |
Keyword:
|
multivalued stochastic differential equation |
Keyword:
|
Covitz-Nadler fixed point theorem |
Keyword:
|
multivalued stochastic process |
MSC:
|
26E25 |
MSC:
|
60G20 |
MSC:
|
60H05 |
MSC:
|
60H10 |
MSC:
|
60H20 |
MSC:
|
93C41 |
MSC:
|
93E03 |
idZBL:
|
Zbl 06738501 |
idMR:
|
MR3632995 |
DOI:
|
10.21136/CMJ.2017.0072-15 |
. |
Date available:
|
2017-03-13T12:03:58Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146037 |
. |
Reference:
|
[1] Agarwal, R. P., O'Regan, D.: Existence for set differential equations via multivalued operator equations.Differential Equations and Applications 5 1-5 Nova Science Publishers, New York (2007). MR 2353574 |
Reference:
|
[2] Ahmad, B., Sivasundaram, S.: $\phi_0$-stability of impulsive hybrid setvalued differential equations with delay by perturbing Lyapunov functions.Commun. Appl. Anal. 12 (2008), 137-145. Zbl 1185.34102, MR 2191489 |
Reference:
|
[3] Anguraj, A., Vinodkumar, A., Chang, Y. K.: Existence results on impulsive stochastic functional differential inclusions with delays.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20 (2013), 301-318. Zbl 1268.34164, MR 3098454 |
Reference:
|
[4] Aubin, J.-P., Prato, G. Da: The viability theorem for stochastic differential inclusions.Stochastic Anal. Appl. 16 (1998), 1-15. Zbl 0931.60059, MR 1603852, 10.1080/07362999808809512 |
Reference:
|
[5] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis.Modern Birkhäuser Classics. Birkhäuser, Boston (2009). Zbl 1168.49014, MR 2458436, 10.1007/978-0-8176-4848-0 |
Reference:
|
[6] Balasubramaniam, P., Ntouyas, S. K.: Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space.J. Math. Anal. Appl. 324 (2006), 161-176. Zbl 1118.93007, MR 2262463, 10.1016/j.jmaa.2005.12.005 |
Reference:
|
[7] Bhaskar, T. G., Lakshmikantham, V., Devi, J. Vasundhara: Nonlinear variation of parameters formula for set differential equations in a metric space.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63 (2005), 735-744. Zbl 1153.34313, MR 2188146, 10.1016/j.na.2005.02.036 |
Reference:
|
[8] Bouchen, A., Arni, A. El, Ouknine, Y.: Multivalued stochastic integration and stochastic differential inclusions.Stochastics Stochastics Rep. 68 (2000), 297-327. Zbl 0957.60069, MR 1746184, 10.1080/17442500008834227 |
Reference:
|
[9] Burachik, R. S., Iusem, A. N.: Set-Valued Mappings and Enlargements of Monotone Operators.Springer Optimization and Its Applications. Springer, Berlin (2008). MR 2353163, 10.1007/978-0-387-69757-4 |
Reference:
|
[10] Chung, K. L., Williams, R. J.: Introduction to Stochastic Integration.Progress in Probability and Statistics 4. Birkhäuser, Boston (1983). Zbl 0527.60058, MR 0711774, 10.1007/978-1-4757-9174-7 |
Reference:
|
[11] H. Covitz, S. B. Nadler, Jr.: Multi-valued contraction mappings in generalized metric spaces.Isr. J. Math. 8 (1970), 5-11. Zbl 0192.59802, MR 0263062, 10.1007/BF02771543 |
Reference:
|
[12] Prato, G. Da, Frankowska, H.: A stochastic Filippov theorem.Stochastic Anal. Appl. 12 (1994), 409-426. Zbl 0810.60059, MR 1285803, 10.1080/07362999408809361 |
Reference:
|
[13] Blasi, F. S. De, Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso.Boll. Unione Mat. Ital., IV. Ser., 2 (1969), 491-501 Errata corrige ibid. 4 1969 699. Zbl 0195.38501, MR 0265653 |
Reference:
|
[14] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). Zbl 0084.10402, MR 0117523 |
Reference:
|
[15] Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149-182. Zbl 0368.60006, MR 0507504, 10.1016/0047-259X(77)90037-9 |
Reference:
|
[16] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1997). Zbl 0887.47001, MR 1485775 |
Reference:
|
[17] Jiang, J., Li, C. F., Chen, H. T.: Existence of solutions for set differential equations involving causal operator with memory in Banach space.J. Appl. Math. Comput. 41 (2013), 183-196. Zbl 1302.34114, MR 3017116, 10.1007/s12190-012-0604-6 |
Reference:
|
[18] Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. Zbl 0152.21403, MR 0188994 |
Reference:
|
[19] Lakshmikantham, V., Bhaskar, T. G., Devi, J. Vasundhara: Theory of Set Differential Equations in a Metric Spaces.Cambridge Scientific Publishers, Cambridge (2006). Zbl 1156.34003, MR 2438229 |
Reference:
|
[20] Malinowski, M. T.: On set differential equations in Banach spaces---a second type Hukuhara differentiability approach.Appl. Math. Comput. 219 (2012), 289-305. Zbl 1297.34073, MR 2949593, 10.1016/j.amc.2012.06.019 |
Reference:
|
[21] Malinowski, M. T.: Second type Hukuhara differentiable solutions to the delay set-valued differential equations.Appl. Math. Comput. 218 (2012), 9427-9437. Zbl 1252.34071, MR 2923039, 10.1016/j.amc.2012.03.027 |
Reference:
|
[22] Malinowski, M. T.: On a new set-valued stochastic integral with respect to semimartingales and its applications.J. Math. Anal. Appl. 408 (2013), 669-680. Zbl 1306.60062, MR 3085061, 10.1016/j.jmaa.2013.06.054 |
Reference:
|
[23] Malinowski, M. T.: Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition.Open. Math. (electronic only) 13 (2015), 106-134. Zbl 1307.93381, MR 3314167, 10.1515/math-2015-0011 |
Reference:
|
[24] Park, J. Y., Jeong, J. U.: Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays.Adv. Difference Equ. (electronic only) 2014 (2014), Article ID 17, 17 pages. Zbl 1343.93017, MR 3213919, 10.1186/1687-1847-2014-17 |
Reference:
|
[25] Protter, P.: Stochastic Integration and Differential Equations. A New Approach.Applications of Mathematics 21. Springer, Berlin (1990). Zbl 0694.60047, MR 1037262, 10.1007/978-3-662-02619-9 |
Reference:
|
[26] Wang, P., Sun, W.: Practical stability in terms of two measures for set differential equations on time scales.Sci. World J. (2014), (2014), Article ID 241034, 7 pages. 10.1155/2014/241034 |
Reference:
|
[27] Yun, Y. S.: On the estimation of approximate solution for SDI.Korean Annals Math. 20 (2003), 63-69. |
Reference:
|
[28] Yun, Y. S.: The boundedness of solutions for stochastic differential inclusions.Bull. Korean Math. Soc. 40 (2003), 159-165. Zbl 1034.60009, MR 1958233, 10.4134/BKMS.2003.40.1.159 |
Reference:
|
[29] Yun, Y. S.: The closed property of set of solutions for stochastic differential inclusions.Commun. Korean Math. Soc. 20 (2005), 135-144. Zbl 1093.60047, MR 2167083, 10.4134/CKMS.2005.20.1.135 |
. |