Previous |  Up |  Next

Article

Title: On solutions set of a multivalued stochastic differential equation (English)
Author: Malinowski, Marek T.
Author: Agarwal, Ravi P.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 11-28
Summary lang: English
.
Category: math
.
Summary: We analyse multivalued stochastic differential equations driven by semimartingales. Such equations are understood as the corresponding multivalued stochastic integral equations. Under suitable conditions, it is shown that the considered multivalued stochastic differential equation admits at least one solution. Then we prove that the set of all solutions is closed and bounded. (English)
Keyword: multivalued stochastic differential equation
Keyword: Covitz-Nadler fixed point theorem
Keyword: multivalued stochastic process
MSC: 26E25
MSC: 60G20
MSC: 60H05
MSC: 60H10
MSC: 60H20
MSC: 93C41
MSC: 93E03
idZBL: Zbl 06738501
idMR: MR3632995
DOI: 10.21136/CMJ.2017.0072-15
.
Date available: 2017-03-13T12:03:58Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146037
.
Reference: [1] Agarwal, R. P., O'Regan, D.: Existence for set differential equations via multivalued operator equations.Differential Equations and Applications 5 1-5 Nova Science Publishers, New York (2007). MR 2353574
Reference: [2] Ahmad, B., Sivasundaram, S.: $\phi_0$-stability of impulsive hybrid setvalued differential equations with delay by perturbing Lyapunov functions.Commun. Appl. Anal. 12 (2008), 137-145. Zbl 1185.34102, MR 2191489
Reference: [3] Anguraj, A., Vinodkumar, A., Chang, Y. K.: Existence results on impulsive stochastic functional differential inclusions with delays.Dyn. Contin. Discrete Impuls. Syst., Ser. A, Math. Anal. 20 (2013), 301-318. Zbl 1268.34164, MR 3098454
Reference: [4] Aubin, J.-P., Prato, G. Da: The viability theorem for stochastic differential inclusions.Stochastic Anal. Appl. 16 (1998), 1-15. Zbl 0931.60059, MR 1603852, 10.1080/07362999808809512
Reference: [5] Aubin, J.-P., Frankowska, H.: Set-Valued Analysis.Modern Birkhäuser Classics. Birkhäuser, Boston (2009). Zbl 1168.49014, MR 2458436, 10.1007/978-0-8176-4848-0
Reference: [6] Balasubramaniam, P., Ntouyas, S. K.: Controllability for neutral stochastic functional differential inclusions with infinite delay in abstract space.J. Math. Anal. Appl. 324 (2006), 161-176. Zbl 1118.93007, MR 2262463, 10.1016/j.jmaa.2005.12.005
Reference: [7] Bhaskar, T. G., Lakshmikantham, V., Devi, J. Vasundhara: Nonlinear variation of parameters formula for set differential equations in a metric space.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 63 (2005), 735-744. Zbl 1153.34313, MR 2188146, 10.1016/j.na.2005.02.036
Reference: [8] Bouchen, A., Arni, A. El, Ouknine, Y.: Multivalued stochastic integration and stochastic differential inclusions.Stochastics Stochastics Rep. 68 (2000), 297-327. Zbl 0957.60069, MR 1746184, 10.1080/17442500008834227
Reference: [9] Burachik, R. S., Iusem, A. N.: Set-Valued Mappings and Enlargements of Monotone Operators.Springer Optimization and Its Applications. Springer, Berlin (2008). MR 2353163, 10.1007/978-0-387-69757-4
Reference: [10] Chung, K. L., Williams, R. J.: Introduction to Stochastic Integration.Progress in Probability and Statistics 4. Birkhäuser, Boston (1983). Zbl 0527.60058, MR 0711774, 10.1007/978-1-4757-9174-7
Reference: [11] H. Covitz, S. B. Nadler, Jr.: Multi-valued contraction mappings in generalized metric spaces.Isr. J. Math. 8 (1970), 5-11. Zbl 0192.59802, MR 0263062, 10.1007/BF02771543
Reference: [12] Prato, G. Da, Frankowska, H.: A stochastic Filippov theorem.Stochastic Anal. Appl. 12 (1994), 409-426. Zbl 0810.60059, MR 1285803, 10.1080/07362999408809361
Reference: [13] Blasi, F. S. De, Iervolino, F.: Equazioni differenziali con soluzioni a valore compatto convesso.Boll. Unione Mat. Ital., IV. Ser., 2 (1969), 491-501 Errata corrige ibid. 4 1969 699. Zbl 0195.38501, MR 0265653
Reference: [14] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). Zbl 0084.10402, MR 0117523
Reference: [15] Hiai, F., Umegaki, H.: Integrals, conditional expectations, and martingales of multivalued functions.J. Multivariate Anal. 7 (1977), 149-182. Zbl 0368.60006, MR 0507504, 10.1016/0047-259X(77)90037-9
Reference: [16] Hu, S., Papageorgiou, N. S.: Handbook of Multivalued Analysis. Volume I: Theory.Mathematics and Its Applications. Kluwer Academic Publishers, Dordrecht (1997). Zbl 0887.47001, MR 1485775
Reference: [17] Jiang, J., Li, C. F., Chen, H. T.: Existence of solutions for set differential equations involving causal operator with memory in Banach space.J. Appl. Math. Comput. 41 (2013), 183-196. Zbl 1302.34114, MR 3017116, 10.1007/s12190-012-0604-6
Reference: [18] Kuratowski, K., Ryll-Nardzewski, C.: A general theorem on selectors.Bull. Acad. Pol. Sci., Sér. Sci. Math. Astron. Phys. 13 (1965), 397-403. Zbl 0152.21403, MR 0188994
Reference: [19] Lakshmikantham, V., Bhaskar, T. G., Devi, J. Vasundhara: Theory of Set Differential Equations in a Metric Spaces.Cambridge Scientific Publishers, Cambridge (2006). Zbl 1156.34003, MR 2438229
Reference: [20] Malinowski, M. T.: On set differential equations in Banach spaces---a second type Hukuhara differentiability approach.Appl. Math. Comput. 219 (2012), 289-305. Zbl 1297.34073, MR 2949593, 10.1016/j.amc.2012.06.019
Reference: [21] Malinowski, M. T.: Second type Hukuhara differentiable solutions to the delay set-valued differential equations.Appl. Math. Comput. 218 (2012), 9427-9437. Zbl 1252.34071, MR 2923039, 10.1016/j.amc.2012.03.027
Reference: [22] Malinowski, M. T.: On a new set-valued stochastic integral with respect to semimartingales and its applications.J. Math. Anal. Appl. 408 (2013), 669-680. Zbl 1306.60062, MR 3085061, 10.1016/j.jmaa.2013.06.054
Reference: [23] Malinowski, M. T.: Set-valued and fuzzy stochastic integral equations driven by semimartingales under Osgood condition.Open. Math. (electronic only) 13 (2015), 106-134. Zbl 1307.93381, MR 3314167, 10.1515/math-2015-0011
Reference: [24] Park, J. Y., Jeong, J. U.: Existence results for impulsive neutral stochastic functional integro-differential inclusions with infinite delays.Adv. Difference Equ. (electronic only) 2014 (2014), Article ID 17, 17 pages. Zbl 1343.93017, MR 3213919, 10.1186/1687-1847-2014-17
Reference: [25] Protter, P.: Stochastic Integration and Differential Equations. A New Approach.Applications of Mathematics 21. Springer, Berlin (1990). Zbl 0694.60047, MR 1037262, 10.1007/978-3-662-02619-9
Reference: [26] Wang, P., Sun, W.: Practical stability in terms of two measures for set differential equations on time scales.Sci. World J. (2014), (2014), Article ID 241034, 7 pages. 10.1155/2014/241034
Reference: [27] Yun, Y. S.: On the estimation of approximate solution for SDI.Korean Annals Math. 20 (2003), 63-69.
Reference: [28] Yun, Y. S.: The boundedness of solutions for stochastic differential inclusions.Bull. Korean Math. Soc. 40 (2003), 159-165. Zbl 1034.60009, MR 1958233, 10.4134/BKMS.2003.40.1.159
Reference: [29] Yun, Y. S.: The closed property of set of solutions for stochastic differential inclusions.Commun. Korean Math. Soc. 20 (2005), 135-144. Zbl 1093.60047, MR 2167083, 10.4134/CKMS.2005.20.1.135
.

Files

Files Size Format View
CzechMathJ_67-2017-1_2.pdf 345.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo