Title:
|
The Cauchy problem for the liquid crystals system in the critical Besov space with negative index (English) |
Author:
|
Ming, Sen |
Author:
|
Yang, Han |
Author:
|
Chen, Zili |
Author:
|
Yong, Ls |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
37-55 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The local well-posedness for the Cauchy problem of the liquid crystals system in the critical Besov space $\dot {B}_{p,1}^{n/p-1}(\mathbb R^n)\times \dot {B}_{p,1}^{n/p}(\mathbb R^n)$ with $n<p<2n$ is established by using the heat semigroup theory and the Littlewood-Paley theory. The global well-posedness for the system is obtained with small initial datum by using the fixed point theorem. The blow-up results for strong solutions to the system are also analysed. (English) |
Keyword:
|
liquid crystals system |
Keyword:
|
critical Besov space |
Keyword:
|
negative index |
Keyword:
|
well-posedness |
Keyword:
|
blow-up |
MSC:
|
35B44 |
MSC:
|
35Q35 |
MSC:
|
76A15 |
idZBL:
|
Zbl 06738503 |
idMR:
|
MR3632997 |
DOI:
|
10.21136/CMJ.2017.0249-15 |
. |
Date available:
|
2017-03-13T12:04:47Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146039 |
. |
Reference:
|
[1] Abidi, H.: Equation de Navier-Stokes avec densité et viscosité variables dans l'espace critique.Rev. Mat. Iberoam. 23 (2007), 537-586 French. Zbl 1175.35099, MR 2371437, 10.4171/RMI/505 |
Reference:
|
[2] Abidi, H., Gui, G., Zhang, P.: On the wellposedness of three-dimensional inhomogeneous Navier-Stokes equations in the critical spaces.Arch. Ration. Mech. Anal. 204 (2012), 189-230. Zbl 1314.76021, MR 2898739, 10.1007/s00205-011-0473-4 |
Reference:
|
[3] Abidi, H., Zhang, P.: On the global well-posedness of 2-D density-dependent Navier-Stokes system with variable viscosity.Available at Arxiv:1301.2371. MR 3344050 |
Reference:
|
[4] Bahouri, H., Chemin, J.-Y., Danchin, R.: Fourier Analysis and Nonlinear Partial Differential Equations.Grundlehren der Mathematischen Wissenschaften 343, Springer, Heidelberg (2011). Zbl 1227.35004, MR 2768550, 10.1007/978-3-642-16830-7 |
Reference:
|
[5] Cannone, M.: Harmonic analysis tools for solving the incompressible Navier-Stokes equations.Handbook of Mathematical Fluid Dynamics. Vol. III Elsevier/North Holland, Amsterdam S. Friedlander et al. (2004), 161-244. Zbl 1222.35139, MR 2099035, 10.1016/s1874-5792(05)80006-0 |
Reference:
|
[6] Cavaterra, C., Rocca, E., Wu, H.: Global weak solution and blow-up criterion of the general Ericksen-Leslie system for nematic liquid crystal flows.J. Differ. Equations 255 (2013), 24-57. Zbl 1282.35087, MR 3045633, 10.1016/j.jde.2013.03.009 |
Reference:
|
[7] Chen, Q., Miao, C.: Global well-posedness for the micropolar fluid system in critical Besov spaces.J. Differ. Equations 252 (2012), 2698-2724. Zbl 1234.35193, MR 2860636, 10.1016/j.jde.2011.09.035 |
Reference:
|
[8] Danchin, R.: Local theory in critical spaces for compressible viscous and heat-conductive gases.Commun. Partial Differ. Equations 26 (2001), 1183-1233. Zbl 1007.35071, MR 1855277, 10.1081/PDE-100106132 |
Reference:
|
[9] Danchin, R., Mucha, P. B.: A Lagrangian approach for the incompressible Navier-Stokes equations with variable density.Commun. Pure Appl. Math. 65 (2012), 1458-1480. Zbl 1247.35088, MR 2957705, 10.1002/cpa.21409 |
Reference:
|
[10] Du, Y., Wang, K.: Regularity of the solutions to the liquid crystal equations with small rough data.J. Differ. Equations 256 (2014), 65-81. Zbl 1320.35125, MR 3115835, 10.1016/j.jde.2013.07.066 |
Reference:
|
[11] Ericksen, J. L.: Hydrostatic theory of liquid crystals.Arch. Ration. Mech. Anal. 9 (1962), 371-378. Zbl 0105.23403, MR 0137403, 10.1007/bf00253358 |
Reference:
|
[12] Fujita, H., Kato, T.: On the Navier-Stokes initial value problem. I.Arch. Ration. Mech. Anal. 16 (1964), 269-315. Zbl 0126.42301, MR 0166499, 10.1007/BF00276188 |
Reference:
|
[13] Hao, Y., Liu, X.: The existence and blow-up criterion of liquid crystals system in critical Besov space.Commun. Pure Appl. Anal. 13 (2014), 225-236. Zbl 1273.76352, MR 3082558, 10.3934/cpaa.2014.13.225 |
Reference:
|
[14] Hong, M.-C.: Global existence of solutions of the simplified Ericksen-Leslie system in dimension two.Calc. Var. Partial Differ. Equ. 40 (2011), 15-36. Zbl 1213.35014, MR 2745194, 10.1007/s00526-010-0331-5 |
Reference:
|
[15] Huang, J., Paicu, M., Zhang, P.: Global solutions to 2-D inhomogeneous Navier-Stokes system with general velocity.J. Math. Pures Appl. (9) 100 (2013), 806-831. Zbl 1290.35184, MR 3125269, 10.1016/j.matpur.2013.03.003 |
Reference:
|
[16] Jiang, F., Jiang, S., Wang, D.: Global weak solutions to the equations of compressible flow of nematic liquid crystals in two dimensions.Arch. Ration. Mech. Anal. 214 (2014), 403-451. Zbl 1307.35225, MR 3255696, 10.1007/s00205-014-0768-3 |
Reference:
|
[17] Li, X., Wang, D.: Global solution to the incompressible flow of liquid crystals.J. Differ. Equations 252 (2012), 745-767. Zbl 1277.35121, MR 2852225, 10.1016/j.jde.2011.08.045 |
Reference:
|
[18] Lin, F.: Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena.Commun. Pure Appl. Anal. 42 (1989), 789-814. Zbl 0703.35173, MR 1003435, 10.1002/cpa.3160420605 |
Reference:
|
[19] Lin, F., Lin, J., Wang, C.: Liquid crystal flows in two dimensions.Arch. Ration. Mech. Anal. 197 (2010), 297-336. Zbl 1346.76011, MR 2646822, 10.1007/s00205-009-0278-x |
Reference:
|
[20] Lin, F., Liu, C.: Partial regularity of the dynamic system modeling the flow of liquid crystals.Discrete Contin. Dyn. Syst. 2 (1996), 1-22. Zbl 0948.35098, MR 1367385, 10.3934/dcds.1996.2.1 |
Reference:
|
[21] Lin, F., Liu, C.: Existence of solutions for the Ericksen-Leslie system.Arch. Ration. Mech. Anal. 154 (2000), 135-156. Zbl 0963.35158, MR 1784963, 10.1007/s002050000102 |
Reference:
|
[22] Lin, J., Ding, S.: On the well-posedness for the heat flow of harmonic maps and the hydrodynamic flow of nematic liquid crystals in critical spaces.Math. Methods Appl. Sci. 35 (2012), 158-173. Zbl 1242.35006, MR 2876822, 10.1002/mma.1548 |
Reference:
|
[23] Liu, Q., Zhang, T., Zhao, J.: Global solutions to the 3D incompressible nematic liquid crystal system.J. Differ. Equations 258 (2015), 1519-1547. Zbl 1308.35222, MR 3295591, 10.1016/j.jde.2014.11.002 |
Reference:
|
[24] Paicu, M., Zhang, P., Zhang, Z.: Global unique solvability of inhomogeneous Navier-Stokes equations with bounded density.Commun. Partial Differ. Equations 38 (2013), 1208-1234. Zbl 1314.35086, MR 3169743, 10.1080/03605302.2013.780079 |
Reference:
|
[25] Wang, C.: Well-posedness for the heat flow of harmonic maps and the liquid crystal flow with rough initial data.Arch. Ration. Mech. Anal. 200 (2011), 1-19. Zbl 1285.35085, MR 2781584, 10.1007/s00205-010-0343-5 |
Reference:
|
[26] Xu, F., Hao, S., Yuan, J.: Well-posedness for the density-dependent incompressible flow of liquid crystals.Math. Methods. Appl. Sci. 38 (2015), 2680-2702. Zbl 06523185, MR 3382698, 10.1002/mma.3248 |
Reference:
|
[27] Xu, X., Zhang, Z.: Global regularity and uniqueness of weak solution for the 2-D liquid crystal flows.J. Differ. Equations 252 (2012), 1169-1181. Zbl 1336.76005, MR 2853534, 10.1016/j.jde.2011.08.028 |
Reference:
|
[28] Zhao, J., Liu, Q., Cui, S.: Global existence and stability for a hydrodynamic system in the nematic liquid crystal flows.Commun. Pure Appl. Anal. 12 (2013), 341-357. Zbl 1264.35007, MR 2972434, 10.3934/cpaa.2013.12.341 |
. |