Previous |  Up |  Next

Article

Title: 4-cycle properties for characterizing rectagraphs and hypercubes (English)
Author: Bouanane, Khadra
Author: Berrachedi, Abdelhafid
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 29-36
Summary lang: English
.
Category: math
.
Summary: A $(0,2)$-graph is a connected graph, where each pair of vertices has either 0 or 2 common neighbours. These graphs constitute a subclass of $(0,\lambda )$-graphs introduced by Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free $(0,2)$-graph. $(0,2)$-graphs include hypercubes, folded cube graphs and some particular graphs such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this paper, we give some local properties of 4-cycles in $(0,\lambda )$-graphs and more specifically in $(0,2)$-graphs, leading to new characterizations of rectagraphs and hypercubes. (English)
Keyword: hypercube
Keyword: $(0,2)$-graph
Keyword: rectagraph
Keyword: 4-cycle
Keyword: characterization
MSC: 05C75
idZBL: Zbl 06738502
idMR: MR3632996
DOI: 10.21136/CMJ.2017.0227-15
.
Date available: 2017-03-13T12:04:21Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146038
.
Reference: [1] Berrachedi, A., Mollard, M.: Median graphs and hypercubes, some new characterizations.Discrete Math. 208-209 (1999), 71-75. Zbl 0933.05133, MR 1725521, 10.1016/S0012-365X(99)00063-1
Reference: [2] Brouwer, A. E.: Classification of small $(0,2)$-graphs.J. Comb. Theory Ser. A 113 (2006), 1636-1645. Zbl 1105.05009, MR 2269544, 10.1016/j.jcta.2006.03.023
Reference: [3] Brouwer, A. E., Östergård, P. R. J.: Classification of the {$(0,2)$}-graphs of valency 8.Discrete Math. 309 (2009), 532-547. Zbl 1194.05129, MR 2499006, 10.1016/j.disc.2008.07.037
Reference: [4] Burosch, G., Havel, I., Laborde, J.-M.: Distance monotone graphs and a new characterization of hypercubes.Discrete Math. 110 (1992), 9-16. Zbl 0768.05033, MR 1197441, 10.1016/0012-365X(92)90696-D
Reference: [5] Laborde, J.-M., Hebbare, S. P. Rao: Another characterization of hypercubes.Discrete Math. 39 (1982), 161-166. Zbl 0482.05033, MR 0675861, 10.1016/0012-365X(82)90139-X
Reference: [6] Mulder, H. M.: $(0,\lambda )$-graphs and $n$-cubes.Discrete Math. 28 (1979), 179-188. Zbl 0418.05034, MR 0546651, 10.1016/0012-365X(79)90095-5
Reference: [7] Mulder, H. M.: The Interval Function of a Graph.Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam (1980). Zbl 0446.05039, MR 0605838
Reference: [8] Mulder, H. M.: Interval-regular graphs.Discrete Math. 41 (1982), 253-269. Zbl 0542.05051, MR 0676887, 10.1016/0012-365X(82)90021-8
Reference: [9] Neumaier, A.: Rectagraphs, diagrams, and Suzuki's sporadic simple group.Ann. Discrete Math. 15 (1982), 305-318. Zbl 0491.05033, MR 0772605, 10.1016/S0304-0208(08)73275-4
Reference: [10] Nieminen, J., Peltola, M., Ruotsalainen, P.: Two characterizations of hypercubes.Electron. J. Comb. (electronic only) 18 (2011), Research Paper 97 10 pages. Zbl 1217.05195, MR 2795778
Reference: [11] Sabidussi, G.: Graph multiplication.Math. Z. 72 (1960), 446-457. Zbl 0093.37603, MR 0209177, 10.1007/BF01162967
.

Files

Files Size Format View
CzechMathJ_67-2017-1_3.pdf 260.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo