Title:
|
4-cycle properties for characterizing rectagraphs and hypercubes (English) |
Author:
|
Bouanane, Khadra |
Author:
|
Berrachedi, Abdelhafid |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
29-36 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A $(0,2)$-graph is a connected graph, where each pair of vertices has either 0 or 2 common neighbours. These graphs constitute a subclass of $(0,\lambda )$-graphs introduced by Mulder in 1979. A rectagraph, well known in diagram geometry, is a triangle-free $(0,2)$-graph. $(0,2)$-graphs include hypercubes, folded cube graphs and some particular graphs such as icosahedral graph, Shrikhande graph, Klein graph, Gewirtz graph, etc. In this paper, we give some local properties of 4-cycles in $(0,\lambda )$-graphs and more specifically in $(0,2)$-graphs, leading to new characterizations of rectagraphs and hypercubes. (English) |
Keyword:
|
hypercube |
Keyword:
|
$(0,2)$-graph |
Keyword:
|
rectagraph |
Keyword:
|
4-cycle |
Keyword:
|
characterization |
MSC:
|
05C75 |
idZBL:
|
Zbl 06738502 |
idMR:
|
MR3632996 |
DOI:
|
10.21136/CMJ.2017.0227-15 |
. |
Date available:
|
2017-03-13T12:04:21Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146038 |
. |
Reference:
|
[1] Berrachedi, A., Mollard, M.: Median graphs and hypercubes, some new characterizations.Discrete Math. 208-209 (1999), 71-75. Zbl 0933.05133, MR 1725521, 10.1016/S0012-365X(99)00063-1 |
Reference:
|
[2] Brouwer, A. E.: Classification of small $(0,2)$-graphs.J. Comb. Theory Ser. A 113 (2006), 1636-1645. Zbl 1105.05009, MR 2269544, 10.1016/j.jcta.2006.03.023 |
Reference:
|
[3] Brouwer, A. E., Östergård, P. R. J.: Classification of the {$(0,2)$}-graphs of valency 8.Discrete Math. 309 (2009), 532-547. Zbl 1194.05129, MR 2499006, 10.1016/j.disc.2008.07.037 |
Reference:
|
[4] Burosch, G., Havel, I., Laborde, J.-M.: Distance monotone graphs and a new characterization of hypercubes.Discrete Math. 110 (1992), 9-16. Zbl 0768.05033, MR 1197441, 10.1016/0012-365X(92)90696-D |
Reference:
|
[5] Laborde, J.-M., Hebbare, S. P. Rao: Another characterization of hypercubes.Discrete Math. 39 (1982), 161-166. Zbl 0482.05033, MR 0675861, 10.1016/0012-365X(82)90139-X |
Reference:
|
[6] Mulder, H. M.: $(0,\lambda )$-graphs and $n$-cubes.Discrete Math. 28 (1979), 179-188. Zbl 0418.05034, MR 0546651, 10.1016/0012-365X(79)90095-5 |
Reference:
|
[7] Mulder, H. M.: The Interval Function of a Graph.Mathematical Centre Tracts 132, Mathematisch Centrum, Amsterdam (1980). Zbl 0446.05039, MR 0605838 |
Reference:
|
[8] Mulder, H. M.: Interval-regular graphs.Discrete Math. 41 (1982), 253-269. Zbl 0542.05051, MR 0676887, 10.1016/0012-365X(82)90021-8 |
Reference:
|
[9] Neumaier, A.: Rectagraphs, diagrams, and Suzuki's sporadic simple group.Ann. Discrete Math. 15 (1982), 305-318. Zbl 0491.05033, MR 0772605, 10.1016/S0304-0208(08)73275-4 |
Reference:
|
[10] Nieminen, J., Peltola, M., Ruotsalainen, P.: Two characterizations of hypercubes.Electron. J. Comb. (electronic only) 18 (2011), Research Paper 97 10 pages. Zbl 1217.05195, MR 2795778 |
Reference:
|
[11] Sabidussi, G.: Graph multiplication.Math. Z. 72 (1960), 446-457. Zbl 0093.37603, MR 0209177, 10.1007/BF01162967 |
. |