Previous |  Up |  Next

Article

Title: On the regularity of the one-sided Hardy-Littlewood maximal functions (English)
Author: Liu, Feng
Author: Mao, Suzhen
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 219-234
Summary lang: English
.
Category: math
.
Summary: In this paper we study the regularity properties of the one-dimensional one-sided Hardy-Littlewood maximal operators $\mathcal {M}^+$ and $\mathcal {M}^-$. More precisely, we prove that $\mathcal {M}^+$ and $\mathcal {M}^-$ map $W^{1,p}(\mathbb {R})\rightarrow W^{1,p}(\mathbb {R})$ with $1<p<\infty $, boundedly and continuously. In addition, we show that the discrete versions $M^+$ and $M^-$ map ${\rm BV}(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ boundedly and map $l^1(\mathbb {Z})\rightarrow {\rm BV}(\mathbb {Z})$ continuously. Specially, we obtain the sharp variation inequalities of $M^+$ and $M^-$, that is, $${\rm Var}(M^{+}(f))\leq {\rm Var}(f)\quad \text {and}\quad {\rm Var}(M^{-}(f))\leq {\rm Var}(f)$$ if $f\in {\rm BV}(\mathbb {Z})$, where ${\rm Var}(f)$ is the total variation of $f$ on $\mathbb {Z}$ and ${\rm BV}(\mathbb {Z})$ is the set of all functions $f\colon \mathbb {Z}\rightarrow \mathbb {R}$ satisfying ${\rm Var}(f)<\infty $. (English)
Keyword: one-sided maximal operator
Keyword: Sobolev space
Keyword: bounded variation
Keyword: continuity
MSC: 42B25
MSC: 46E35
idZBL: Zbl 06738514
idMR: MR3633008
DOI: 10.21136/CMJ.2017.0475-15
.
Date available: 2017-03-13T12:10:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146050
.
Reference: [1] Aldaz, J. M., Lázaro, J. Pérez: Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities.Trans. Am. Math. Soc. 359 (2007), 2443-2461. Zbl 1143.42021, MR 2276629, 10.1090/S0002-9947-06-04347-9
Reference: [2] Bober, J., Carneiro, E., Hughes, K., Pierce, L. B.: On a discrete version of Tanaka's theorem for maximal functions.Proc. Am. Math. Soc. 140 (2012), 1669-1680. Zbl 1245.42017, MR 2869151, 10.1090/S0002-9939-211-11008-6
Reference: [3] Calderón, A. P.: Ergodic theory and translation invariant operators.Proc. Natl. Acad. Sci. USA 59 (1968), 349-353. Zbl 0185.21806, MR 0227354, 10.1073/pnas.59.2.349
Reference: [4] Carneiro, E., Hughes, K.: On the endpoint regularity of discrete maximal operators.Math. Res. Lett. 19 (2012), 1245-1262. Zbl 1286.42026, MR 3091605, 10.4310/MRL.2012.v19.n6.a6
Reference: [5] Carneiro, E., Moreira, D.: On the regularity of maximal operators.Proc. Am. Math. Soc. 136 (2008), 4395-4404. Zbl 1157.42003, MR 2431055, 10.1090/S0002-9939-08-09515-4
Reference: [6] Dunford, N., Schwartz, J.: Convergence almost everywhere of operator averages.Proc. Natl. Acad. Sci. USA 41 (1955), 229-231. Zbl 0064.37001, MR 0070980, 10.1073/pnas.41.4.229
Reference: [7] Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces.Ann. Acad. Sci. Fenn. Math. 29 (2004), 167-176. Zbl 1059.46020, MR 2041705
Reference: [8] Hardy, G. H., Littlewood, J. E.: A maximal theorem with function-theoretic applications.Acta Math. 54 (1930), 81-116 \99999JFM99999 56.0264.02. MR 1555303, 10.1007/BF02547518
Reference: [9] Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function.Isr. J. Math. 100 (1997), 117-124. Zbl 0882.43003, MR 1469106, 10.1007/BF02773636
Reference: [10] Kinnunen, J., Lindqvist, P.: The derivative of the maximal function.J. Reine Angew. Math. 503 (1998), 161-167. Zbl 0904.42015, MR 1650343, 10.1515/crll.1998.095
Reference: [11] Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function.Bull. Lond. Math. Soc. 35 (2003), 529-535. Zbl 1021.42009, MR 1979008, 10.1112/S0024609303002017
Reference: [12] Kurka, O.: On the variation of the Hardy-Littlewood maximal function.Ann. Acad. Sci. Fenn. Math. 40 (2015), 109-133. Zbl 06496747, MR 3310075, 10.5186/aasfm.2015.4003
Reference: [13] Liu, F., Chen, T., Wu, H.: A note on the endpoint regularity of the Hardy-Littlewood maximal functions.Bull. Aust. Math. Soc. 94 (2016), 121-130. Zbl 1347.42034, MR 3539328, 10.1017/S0004972715001392
Reference: [14] Liu, F., Wu, H.: On the regularity of the multisublinear maximal functions.Can. Math. Bull. 58 (2015), 808-817. Zbl 06527789, MR 3415670, 104153/CMB-2014-070-7
Reference: [15] Luiro, H.: Continuity of the maximal operator in Sobolev spaces.Proc. Am. Math. Soc. 135 (2007), 243-251. Zbl 1136.42018, MR 2280193, 10.1090/S0002-9939-06-08455-3
Reference: [16] Luiro, H.: On the regularity of the Hardy-Littlewood maximal operator on subdomains of $\mathbb{R}^n$.Proc. Edinb. Math. Soc. II. 53 (2010), 211-237. Zbl 1183.42025, MR 2579688, 10.1017/S0013091507000867
Reference: [17] Sawyer, E.: Weighted inequalities for the one-sided Hardy-Littlewood maximal function.Trans. Am. Math. Soc. 297 (1986), 53-61. Zbl 0627.42009, MR 0849466, 10.1090/S0002-9947-1986-0849466-0
Reference: [18] Stein, E. M., Shakarchi, R.: Real Analysis. Measure Theory, Integration, and Hilbert Spaces.Princeton Lectures in Analysis 3, Princeton University Press, Princeton (2005). Zbl 1081.28001, MR 2129625
Reference: [19] Tanaka, H.: A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function.Bull. Aust. Math. Soc. 65 (2002), 253-258. Zbl 0999.42013, MR 1898539, 10.1017/S0004972700020293
Reference: [20] Temur, F.: On regularity of the discrete Hardy-Littlewood maximal function.Available at ArXiv:1303.3993v1 [math.CA].
.

Files

Files Size Format View
CzechMathJ_67-2017-1_15.pdf 323.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo