Previous |  Up |  Next

Article

Title: Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complete pseudoconvex Reinhardt domains (English)
Author: Çelik, Mehmet
Author: Zeytuncu, Yunus E.
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 207-217
Summary lang: English
.
Category: math
.
Summary: On complete pseudoconvex Reinhardt domains in $\mathbb {C}^2$, we show that there is no nonzero Hankel operator with anti-holomorphic symbol that is Hilbert-Schmidt. In the proof, we explicitly use the pseudoconvexity property of the domain. We also present two examples of unbounded non-pseudoconvex domains in $\mathbb {C}^2$ that admit nonzero Hilbert-Schmidt Hankel operators with anti-holomorphic symbols. In the first example the Bergman space is finite dimensional. However, in the second example the Bergman space is infinite dimensional and the Hankel operator $H_{\bar {z}_1 \bar {z}_2}$ is Hilbert-Schmidt. (English)
Keyword: canonical solution operator for $\overline {\partial }$-problem
Keyword: Hankel operator
Keyword: Hilbert-Schmidt operator
MSC: 32A36
MSC: 47B10
MSC: 47B35
idZBL: Zbl 06738513
idMR: MR3633007
DOI: 10.21136/CMJ.2017.0471-15
.
Date available: 2017-03-13T12:09:40Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146049
.
Reference: [1] Arazy, J.: Boundedness and compactness of generalized Hankel operators on bounded symmetric domains.J. Funct. Anal. 137 (1996), 97-151. Zbl 0880.47015, MR 1383014, 10.1006/jfan.1996.0042
Reference: [2] Arazy, J., Fisher, S. D., Peetre, J.: Hankel operators on weighted Bergman spaces.Am. J. Math. 110 (1988), 989-1053. Zbl 0669.47017, MR 0970119, 10.2307/2374685
Reference: [3] Çelik, M., Zeytuncu, Y. E.: Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on complex ellipsoids.Integral Equations Oper. Theory 76 (2013), 589-599. Zbl 1288.47028, MR 3073947, 10.1007/s00020-013-2070-4
Reference: [4] Harrington, P., Raich, A.: Defining functions for unbounded $C^m$ domains.Rev. Mat. Iberoam. 29 (2013), 1405-1420. Zbl 1288.26008, MR 3148609, 10.4171/RMI/762
Reference: [5] Harrington, P. S., Raich, A.: Sobolev spaces and elliptic theory on unbounded domains in $\mathbb R^n$.Adv. Diff. Equ. 19 (2014), 635-692. Zbl 1301.46015, MR 3252898
Reference: [6] Krantz, S. G., Li, S.-Y., Rochberg, R.: The effect of boundary geometry on Hankel operators belonging to the trace ideals of Bergman spaces.Integral Equations Oper. Theory 28 (1997), 196-213. Zbl 0903.47019, MR 1451501, 10.1007/BF01191818
Reference: [7] Le, T.: Hilbert-Schmidt Hankel operators over complete Reinhardt domains.Integral Equations Oper. Theory 78 (2014), 515-522. Zbl 1318.47047, MR 3180876, 10.1007/s00020-013-2103-z
Reference: [8] Li, H.: Schatten class Hankel operators on the Bergman spaces of strongly pseudoconvex domains.Proc. Am. Math. Soc. 119 (1993), 1211-1221. Zbl 0802.47022, MR 1169879, 10.2307/2159984
Reference: [9] Peloso, M. M.: Hankel operators on weighted Bergman spaces on strongly pseudoconvex domains.Ill. J. Math. 38 (1994), 223-249. Zbl 0812.47023, MR 1260841, 10.1215/ijm/1255986798
Reference: [10] Retherford, J. R.: Hilbert space: Compact operators and the trace theorem.London Mathematical Society Student Texts 27, Cambridge University Press, Cambridge (1993). Zbl 0783.47031, MR 1237405
Reference: [11] Schneider, G.: A different proof for the non-existence of Hilbert-Schmidt Hankel operators with anti-holomorphic symbols on the Bergman space.Aust. J. Math. Anal. Appl. (electronic only) 4 (2007), Artical No. 1, pages 7. Zbl 1220.47040, MR 2326997
Reference: [12] Wiegerinck, J. J. O. O.: Domains with finite-dimensional Bergman space.Math. Z. 187 (1984), 559-562. Zbl 0534.32001, MR 0760055, 10.1007/BF01174190
Reference: [13] Zhu, K. H.: Hilbert-Schmidt Hankel operators on the Bergman space.Proc. Am. Math. Soc. 109 (1990), 721-730. Zbl 0731.47028, MR 1013987, 10.2307/2048212
.

Files

Files Size Format View
CzechMathJ_67-2017-1_14.pdf 291.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo