Previous |  Up |  Next

Article

Title: A curvature identity on a 6-dimensional Riemannian manifold and its applications (English)
Author: Euh, Yunhee
Author: Park, Jeong Hyeong
Author: Sekigawa, Kouei
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 253-270
Summary lang: English
.
Category: math
.
Summary: We derive a curvature identity that holds on any 6-dimensional Riemannian manifold, from the Chern-Gauss-Bonnet theorem for a 6-dimensional closed Riemannian manifold. Moreover, some applications of the curvature identity are given. We also define a generalization of harmonic manifolds to study the Lichnerowicz conjecture for a harmonic manifold ``a harmonic manifold is locally symmetric'' and provide another proof of the Lichnerowicz conjecture refined by Ledger for the 4-dimensional case under a slightly more general setting.\looseness -1 (English)
Keyword: Chern-Gauss-Bonnet theorem
Keyword: curvature identity
Keyword: locally harmonic manifold
MSC: 53B20
MSC: 53C25
idZBL: Zbl 06738516
idMR: MR3633010
DOI: 10.21136/CMJ.2017.0540-15
.
Date available: 2017-03-13T12:11:09Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146052
.
Reference: [1] Arias-Marco, T., Kowalski, O.: Classification of 4-dimensional homogeneous weakly Einstein manifolds.Czech. Math. J. 65 (2015), 21-59. Zbl 06433720, MR 3336024, 10.1007/s10587-015-0159-4
Reference: [2] Berger, M.: Quelques formules de variation pour une structure riemannienne.Ann. Sci. Éc. Norm. Supér French 3 (1970), 285-294. Zbl 0204.54802, MR 0278238, 10.24033/asens.1194
Reference: [3] Berndt, J., Tricerri, F., Vanhecke, L.: Generalized Heisenberg Groups and Damek Ricci Harmonic Spaces.Lecture Notes in Mathematics 1598, Springer, Berlin (1995). Zbl 0818.53067, MR 1340192, 10.1007/BFb0076902
Reference: [4] Besse, A. L.: Manifolds All of Whose Geodesics Are Closed.Ergebnisse der Mathematik und ihrer Grenzgebiete 93, Springer, Berlin (1978). Zbl 0387.53010, MR 496885, 10.1007/978-3-642-61876-5_3
Reference: [5] Boeckx, E., Vanhecke, L.: Unit tangent sphere bundles with constant scalar curvature.Czech. Math. J. 51 (2001), 523-544. Zbl 1079.53063, MR 1851545, 10.1023/A:1013779805244
Reference: [6] Carpenter, P., Gray, A., Willmore, T. J.: The curvature of Einstein symmetric spaces.Q. J. Math., Oxf. II. 33 (1982), 45-64. Zbl 0509.53045, MR 0689850, 10.1093/qmath/33.1.45
Reference: [7] Chun, S. H., Park, J. H., Sekigawa, K.: H-contact unit tangent sphere bundles of Einstein manifolds.Q. J. Math. 62 (2011), 59-69. Zbl 1222.53047, MR 2774353, 10.1093/qmath/hap025
Reference: [8] Copson, E. T., Ruse, H. S.: Harmonic Riemannian space.Proc. R. Soc. Edinb. 60 (1940), 117-133. Zbl 0027.26001, MR 0002249, 10.1017/s0370164600020095
Reference: [9] Damek, E., Ricci, F.: A class of nonsymmetric harmonic Riemannian spaces.Bull. Am. Math. Soc., New. Ser. 27 (1992), 139-142 \99999DOI99999 10.1090/S0273-0979-1992-00293-8 \goodbreak. Zbl 0755.53032, MR 1142682, 10.1090/S0273-0979-1992-00293-8
Reference: [10] Euh, Y., Gilkey, P., Park, J. H., Sekigawa, K.: Transplanting geometrical structures.Differ. Geom. Appl. 31 (2013), 374-387. Zbl 1282.53024, MR 3049632, 10.1016/j.difgeo.2013.03.006
Reference: [11] Euh, Y., Park, J. H., Sekigawa, K.: A curvature identity on a 4-dimensional Riemannian manifold.Result. Math. 63 (2013), 107-114. Zbl 1273.53009, MR 3009674, 10.1007/s00025-011-0164-3
Reference: [12] Euh, Y., Park, J. H., Sekigawa, K.: A generalization of a 4-dimensional Einstein manifold.Math. Slovaca 63 (2013), 595-610. Zbl 06201661, MR 3071978, 10.2478/s12175-013-0121-6
Reference: [13] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities.Differ. Geom. Appl. 29 (2011), 770-778. Zbl 1259.53013, MR 2846274, 10.1016/j.difgeo.2011.08.005
Reference: [14] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities II.J. Geom. Phys. 62 (2012), 814-825. Zbl 1246.53022, MR 2888984, 10.1016/j.geomphys.2012.01.002
Reference: [15] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities III.Int. J. Geom. Methods Mod. Phys. 10 Article ID 1350025, 21 pages (2013). Zbl 06200755, MR 3056523, 10.1142/S0219887813500254
Reference: [16] Gilkey, P., Park, J. H., Sekigawa, K.: Universal curvature identities and Euler Lagrange formulas for Kähler manifolds.J. Math. Soc. Japan 68 (2016), 459-487. Zbl 06597343, MR 3488133, 10.2969/jmsj/06820459
Reference: [17] Gray, A., Willmore, T. J.: Mean-value theorems for Riemannian manifolds.Proc. R. Soc. Edinb., Sect. A 92 (1982), 343-364. Zbl 0495.53040, MR 0677493, 10.1017/S0308210500032571
Reference: [18] Kreyssig, P.: An introduction to harmonic manifolds and the Lichnerowicz conjecture.Available at arXiv:1007.0477v1.
Reference: [19] Ledger, A. J.: Harmonic Spaces.Ph.D. Thesis, University of Durham, Durham (1954).
Reference: [20] Ledger, A. J.: Symmetric harmonic spaces.J. London Math. Soc. 32 (1957), 53-56. Zbl 0084.37406, MR 0083796, 10.1112/jlms/s1-32.1.53
Reference: [21] Lichnerowicz, A.: Sur les espaces riemanniens complétement harmoniques.Bull. Soc. Math. Fr. French 72 (1944), 146-168. Zbl 0060.38506, MR 0012886, 10.24033/bsmf.1359
Reference: [22] Lichnerowicz, A.: Géométrie des groupes de transformations.Travaux et recherches mathématiques 3, Dunod, Paris French (1958). Zbl 0096.16001, MR 0124009
Reference: [23] Nikolayevsky, Y.: Two theorems on harmonic manifolds.Comment. Math. Helv. 80 (2005), 29-50. Zbl 1078.53032, MR 2130564, 10.4171/CMH/2
Reference: [24] Patterson, E. M.: A class of critical Riemannian metrics.J. Lond. Math. Soc., II. Ser. 23 (1981), 349-358. Zbl 0417.53025, MR 0609115, 10.1112/jlms/s2-23.2.349
Reference: [25] Sakai, T.: On eigen-values of Laplacian and curvature of Riemannian manifold.Tohoku Math. J., II. Ser. 23 (1971), 589-603. Zbl 0237.53040, MR 0303465, 10.2748/tmj/1178242547
Reference: [26] Sekigawa, K.: On 4-dimensional connected Einstein spaces satisfying the condition $R(X,Y)\cdot R=0$.Sci. Rep. Niigata Univ., Ser. A 7 (1969), 29-31. Zbl 0345.53035, MR 0261490
Reference: [27] Sekigawa, K., Vanhecke, L.: Volume-preserving geodesic symmetries on four-dimensional Kähler manifolds.Proc. Symp. Differential geometry, Peñiscola 1985, Lect. Notes Math. 1209, Springer, Berlin 275-291 (1986). Zbl 0605.53031, MR 0863763, 10.1007/BFb0076638
Reference: [28] Szabó, Z. I.: The Lichnerowicz conjecture on harmonic manifolds.J. Differ. Geom. 31 (1990), 1-28. Zbl 0686.53042, MR 1030663, 10.4310/jdg/1214444087
Reference: [29] Tachibana, S.: On the characteristic function of spaces of constant holomorphic curvature.Colloq. Math. 26 (1972), 149-155. Zbl 0223.53044, MR 0336678, 10.4064/cm-26-1-149-155
Reference: [30] Walker, A. G.: On Lichnerowicz's conjecture for harmonic 4-spaces.J. Lond. Math. Soc. 24 (1949), 21-28. Zbl 0032.18801, MR 0030280, 10.1112/jlms/s1-24.1.21
Reference: [31] Watanabe, Y.: On the characteristic function of harmonic Kählerian spaces.Tohoku Math. J., II. Ser. 27 (1975), 13-24. Zbl 0311.53068, MR 0365439, 10.2748/tmj/1178241030
Reference: [32] Watanabe, Y.: On the characteristic functions of harmonic quaternion Kählerian spaces.Kōdai Math. Semin. Rep. 27 (1976), 410-420. Zbl 0336.53019, MR 0418004, 10.2996/kmj/1138847322
Reference: [33] Watanabe, Y.: The sectional curvature of a 5-dimensional harmonic Riemannian manifold.Kodai Math. J. 6 (1983), 106-109 \99999DOI99999 10.2996/kmj/1138036667 \filbreak. Zbl 0519.53013, MR 0698331, 10.2996/kmj/1138036667
.

Files

Files Size Format View
CzechMathJ_67-2017-1_17.pdf 346.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo