Previous |  Up |  Next

Article

Title: A characterization of a certain real hypersurface of type $({\rm A}_2)$ in a complex projective space (English)
Author: Kim, Byung Hak
Author: Kim, In-Bae
Author: Maeda, Sadahiro
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 1
Year: 2017
Pages: 271-278
Summary lang: English
.
Category: math
.
Summary: In the class of real hypersurfaces $M^{2n-1}$ isometrically immersed into a nonflat complex space form $\widetilde {M}_n(c)$ of constant holomorphic sectional curvature $c$ $(\ne 0)$ which is either a complex projective space $\mathbb {C}P^n(c)$ or a complex hyperbolic space $\mathbb {C}H^n(c)$ according as $c > 0$ or $c < 0$, there are two typical examples. One is the class of all real hypersurfaces of type (A) and the other is the class of all ruled real hypersurfaces. Note that the former example are Hopf manifolds and the latter are non-Hopf manifolds. In this paper, inspired by a simple characterization of all ruled real hypersurfaces in $\widetilde {M}_n(c)$, we consider a certain real hypersurface of type $({\rm A}_2)$ in $\mathbb {C}P^n(c)$ and give a geometric characterization of this Hopf manifold. (English)
Keyword: ruled real hypersurface
Keyword: nonflat complex space form
Keyword: real hypersurfaces of type $({\rm A}_2)$ in a complex projective space
Keyword: geodesics
Keyword: structure torsion
Keyword: Hopf manifold
MSC: 53B25
MSC: 53C40
idZBL: Zbl 06738517
idMR: MR3633011
DOI: 10.21136/CMJ.2017.0546-15
.
Date available: 2017-03-13T12:11:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146053
.
Reference: [1] Adachi, T., Maeda, S., Udagawa, S.: Circles in a complex projective space.Osaka J. Math. 32 (1995), 709-719. Zbl 0857.53034, MR 1367901
Reference: [2] Adachi, T., Maeda, S.: Global behaviours of circles in a complex hyperbolic space.Tsukuba J. Math. 21 (1997), 29-42. Zbl 0891.53036, MR 1467219, 10.21099/tkbjm/1496163159
Reference: [3] Adachi, T.: Geodesics on real hypersurfaces of type $( A_2)$ in a complex space form.Monatsh. Math. 153 (2008), 283-293. Zbl 1151.53049, MR 2394551, 10.1007/s00605-008-0521-9
Reference: [4] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one.Trans. Am. Math. Soc. 359 (2007), 3425-3438. Zbl 1117.53041, MR 2299462, 10.1090/S0002-9947-07-04305-X
Reference: [5] Ki, U.-H., Kim, I.-B., Lim, D. H.: Characterizations of real hypersurfaces of type A in a complex space form.Bull. Korean Math. Soc. 47 (2010), 1-15. Zbl 1191.53039, MR 2604227, 10.4134/BKMS.2010.47.1.001
Reference: [6] Maeda, Y.: On real hypersurfaces of a complex projective space.J. Math. Soc. Japan 28 (1976), 529-540. Zbl 0324.53039, MR 0407772, 10.2969/jmsj/02830529
Reference: [7] Maeda, S., Adachi, T.: Characterizations of hypersurfaces of type $ A_2$ in a complex projective space.Bull. Aust. Math. Soc. 77 (2008), 1-8. Zbl 1137.53311, MR 2411863, 10.1017/S0004972708000014
Reference: [8] Maeda, S., Adachi, T., Kim, Y. H.: A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space.J. Math. Soc. Japan 61 (2009), 315-325. Zbl 1159.53012, MR 2272881, 10.2969/jmsj/06110315
Reference: [9] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms.Tight and Taut Submanifolds T. E. Cecil et al. Math. Sci. Res. Inst. Publ. 32, Cambridge Univ. Press, Cambridge (1998), 233-305. Zbl 0904.53005, MR 1486875
Reference: [10] Takagi, R.: On homogeneous real hypersurfaces in a complex projective space.Osaka J. Math. 10 (1973), 495-506. Zbl 0274.53062, MR 0336660
.

Files

Files Size Format View
CzechMathJ_67-2017-1_18.pdf 275.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo