Title:
|
A characterization of a certain real hypersurface of type $({\rm A}_2)$ in a complex projective space (English) |
Author:
|
Kim, Byung Hak |
Author:
|
Kim, In-Bae |
Author:
|
Maeda, Sadahiro |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
1 |
Year:
|
2017 |
Pages:
|
271-278 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In the class of real hypersurfaces $M^{2n-1}$ isometrically immersed into a nonflat complex space form $\widetilde {M}_n(c)$ of constant holomorphic sectional curvature $c$ $(\ne 0)$ which is either a complex projective space $\mathbb {C}P^n(c)$ or a complex hyperbolic space $\mathbb {C}H^n(c)$ according as $c > 0$ or $c < 0$, there are two typical examples. One is the class of all real hypersurfaces of type (A) and the other is the class of all ruled real hypersurfaces. Note that the former example are Hopf manifolds and the latter are non-Hopf manifolds. In this paper, inspired by a simple characterization of all ruled real hypersurfaces in $\widetilde {M}_n(c)$, we consider a certain real hypersurface of type $({\rm A}_2)$ in $\mathbb {C}P^n(c)$ and give a geometric characterization of this Hopf manifold. (English) |
Keyword:
|
ruled real hypersurface |
Keyword:
|
nonflat complex space form |
Keyword:
|
real hypersurfaces of type $({\rm A}_2)$ in a complex projective space |
Keyword:
|
geodesics |
Keyword:
|
structure torsion |
Keyword:
|
Hopf manifold |
MSC:
|
53B25 |
MSC:
|
53C40 |
idZBL:
|
Zbl 06738517 |
idMR:
|
MR3633011 |
DOI:
|
10.21136/CMJ.2017.0546-15 |
. |
Date available:
|
2017-03-13T12:11:34Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146053 |
. |
Reference:
|
[1] Adachi, T., Maeda, S., Udagawa, S.: Circles in a complex projective space.Osaka J. Math. 32 (1995), 709-719. Zbl 0857.53034, MR 1367901 |
Reference:
|
[2] Adachi, T., Maeda, S.: Global behaviours of circles in a complex hyperbolic space.Tsukuba J. Math. 21 (1997), 29-42. Zbl 0891.53036, MR 1467219, 10.21099/tkbjm/1496163159 |
Reference:
|
[3] Adachi, T.: Geodesics on real hypersurfaces of type $( A_2)$ in a complex space form.Monatsh. Math. 153 (2008), 283-293. Zbl 1151.53049, MR 2394551, 10.1007/s00605-008-0521-9 |
Reference:
|
[4] Berndt, J., Tamaru, H.: Cohomogeneity one actions on noncompact symmetric spaces of rank one.Trans. Am. Math. Soc. 359 (2007), 3425-3438. Zbl 1117.53041, MR 2299462, 10.1090/S0002-9947-07-04305-X |
Reference:
|
[5] Ki, U.-H., Kim, I.-B., Lim, D. H.: Characterizations of real hypersurfaces of type A in a complex space form.Bull. Korean Math. Soc. 47 (2010), 1-15. Zbl 1191.53039, MR 2604227, 10.4134/BKMS.2010.47.1.001 |
Reference:
|
[6] Maeda, Y.: On real hypersurfaces of a complex projective space.J. Math. Soc. Japan 28 (1976), 529-540. Zbl 0324.53039, MR 0407772, 10.2969/jmsj/02830529 |
Reference:
|
[7] Maeda, S., Adachi, T.: Characterizations of hypersurfaces of type $ A_2$ in a complex projective space.Bull. Aust. Math. Soc. 77 (2008), 1-8. Zbl 1137.53311, MR 2411863, 10.1017/S0004972708000014 |
Reference:
|
[8] Maeda, S., Adachi, T., Kim, Y. H.: A characterization of the homogeneous minimal ruled real hypersurface in a complex hyperbolic space.J. Math. Soc. Japan 61 (2009), 315-325. Zbl 1159.53012, MR 2272881, 10.2969/jmsj/06110315 |
Reference:
|
[9] Niebergall, R., Ryan, P. J.: Real hypersurfaces in complex space forms.Tight and Taut Submanifolds T. E. Cecil et al. Math. Sci. Res. Inst. Publ. 32, Cambridge Univ. Press, Cambridge (1998), 233-305. Zbl 0904.53005, MR 1486875 |
Reference:
|
[10] Takagi, R.: On homogeneous real hypersurfaces in a complex projective space.Osaka J. Math. 10 (1973), 495-506. Zbl 0274.53062, MR 0336660 |
. |