Title:
|
On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity (English) |
Author:
|
Mallick, Sahanous |
Author:
|
De, Uday Chand |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
55 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
111-127 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_{4}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes. (English) |
Keyword:
|
Einstein manifolds |
Keyword:
|
quasi Einstein manifolds |
Keyword:
|
generalized quasi Einstein manifolds |
Keyword:
|
quasi-conformal curvature tensor |
Keyword:
|
space-matter tensor |
MSC:
|
53B30 |
MSC:
|
53C25 |
MSC:
|
53C35 |
MSC:
|
53C50 |
idZBL:
|
Zbl 1366.53033 |
. |
Date available:
|
2017-03-16T12:50:23Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146065 |
. |
Reference:
|
[1] Ahsan, Z.: A symmetry property of the spacetime of general relativity in terms of the space-matter tensor.. Brazilian J. Phys. 26 (1996), 572–576. |
Reference:
|
[2] Ahsan, Z., Siddiqui, S. A.: On the divergence of the space-matter tensor in general relativity.. Adv. Studies Theor. Phys. 4 (2010), 543–556. Zbl 1216.83008, MR 2739701 |
Reference:
|
[3] Ahsan, Z., Siddiqui, S. A.: Concircular curvature tensor and fluid spacetimes.. Int J. Theor. Phys. 48, 11 (2009), 3202–3212. Zbl 1255.83110, MR 2546699, 10.1007/s10773-009-0121-z |
Reference:
|
[4] Amur, K., Maralabhavi, Y. B.: On quasi-conformal flat spaces.. Tensor (N.S.) 31, 2 (1977), 194–198. MR 0461380 |
Reference:
|
[5] Bejan, C. L.: Characterizations of quasi-Einstein manifolds.. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.) 53 (2007), 67–72. Zbl 1199.53078, MR 2522383 |
Reference:
|
[6] Bejan, C. L., Binh, T. Q.: Generalized Einstein manifolds.. In: Differential Geometry and its Applications, Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic, 27–31 August 2007, World Sci. Publ., Hackensack, NJ, 2008, 57–64. Zbl 1172.53029, MR 2462782 |
Reference:
|
[7] Besse, A. L.: Einstein Manifolds.. Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1987. Zbl 0613.53001, MR 2371700 |
Reference:
|
[8] Chaki, M. C., Maity, R. K.: On quasi Einstein manifolds.. Publ. Math. Debrecen 57 (2000), 297–306. Zbl 0968.53030, MR 1798715 |
Reference:
|
[9] Chaki, M. C.: On generalized quasi-Einstein manifolds.. Publ. Math. Debrecen 58 (2001), 683–691. Zbl 1062.53035, MR 1828719 |
Reference:
|
[10] Chaki, M. C., Ray, S.: Spacetimes with covariant constant energy-momentum tensor.. Int. J. Theor. Phys. 35 (1996), 1027–1032. MR 1386778, 10.1007/BF02302387 |
Reference:
|
[11] De, U. C., Guha, N., Kamilya, D.: On generalized Ricci-recurrent manifolds.. Tensor (N.S.) 56 (1995), 312–317. Zbl 0859.53009, MR 1413041 |
Reference:
|
[12] De, U. C., Ghosh, G. C.: On quasi-Einstein manifolds.. Period. Math. Hungar. 48 (2004), 223–231. Zbl 1059.53030, MR 2077698, 10.1023/B:MAHU.0000038977.94711.ab |
Reference:
|
[13] De, U. C., Ghosh, G. C.: On conformally flat special quasi-Einstein manifolds.. Publ. Math. Debrecen 66 (2005), 129–136. Zbl 1075.53039, MR 2128688 |
Reference:
|
[14] De, U. C., Ghosh, G. C.: On quasi Einstein and special quasi Einstein manifolds.. In: Proc. of the Conf. of Mathematics and its Applications, Kuwait University, Kuwait, 2004, 178–191. MR 2143298 |
Reference:
|
[15] De, U. C., Gazi, A. K.: On nearly quasi Einstein manifolds.. Novi Sad J. Math. 38 (2008), 115–121. Zbl 1274.53066, MR 2526034 |
Reference:
|
[16] De, U. C., Sarkar, A.: On the quasi-conformal curvature tensor of a $(k,\mu )$-contact metric manifolds.. Math. Rep. 14, 2 (2012), 115–129. MR 3051849 |
Reference:
|
[17] De, U. C., Matsuyama, Y.: Quasi-conformally flat manifolds satisfying certain conditions on the Ricci tensor.. SUT J. Math. 42, 2 (2006), 295–303. MR 2419267 |
Reference:
|
[18] De, U. C., Jun, J. B., Gazi, A. K.: Sasakian manifolds with quasi-conformal curvature tensor.. Bull. Korean Math. Soc. 45, 2 (2008), 313–319. Zbl 1148.53306, MR 2419079, 10.4134/BKMS.2008.45.2.313 |
Reference:
|
[19] De, U. C., Mallick, S.: Spacetimes admitting $W_{2}$-curvature tensor.. Int. J. Geom. Methods Mod. Phys. 11 (2014), 1–8. Zbl 1291.53022, MR 3194321 |
Reference:
|
[20] Hosseinzadeh, A., Taleshian, A.: On conformal and quasi-conformal curvature tensors of an N(k)-quasi-Einstein manifold.. Commun. Korean Math. Soc. 27 (2012), 317–326. Zbl 1252.53057, MR 2962525, 10.4134/CKMS.2012.27.2.317 |
Reference:
|
[21] Debnath, P., Konar, A.: On quasi-Einstein manifolds and quasi-Einstein spacetimes.. Differ. Geom. Dyn. Syst. 12 (2010), 73–82. MR 2606548 |
Reference:
|
[22] Gray, A.: Einstein-like manifolds which are not Einstein.. Geom. Dedicate 7 (1998), 259–280. MR 0505561 |
Reference:
|
[23] Guha, S.: On a perfect fluid space-time admitting quasi conformal curvature tensor.. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 843–849. Zbl 1056.53022, MR 2021832 |
Reference:
|
[24] Guha, S. R.: On quasi-Einstein and generalized quasi-Einstein manifolds.. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 821–842. Zbl 1056.53033, MR 2021831 |
Reference:
|
[25] Güler, S., Demirbağ, S. A.: A study of generalized quasi-Einstein spacetimes with applications in general relativity.. Int. J. Theor. Phys. 55, 1 (2016), 548–562. Zbl 1337.83010, 10.1007/s10773-015-2692-1 |
Reference:
|
[26] Mantica, C. A., Suh, Y. J.: Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds.. Balkan J. Geom. Appl. 16, 1 (2011), 66–77. Zbl 1226.53007, MR 2785717 |
Reference:
|
[27] Mantica, C. A., Suh, Y. J.: Pseudo-Z symmetric spacetimes.. J. Math. Phys. 55, 4 (2014), 1–12. MR 3390591, 10.1063/1.4871442 |
Reference:
|
[28] Nagaraja, H. G.: On N(k)-mixed quasi-Einstein manifolds.. Eur. J. Pure Appl. Math. 3 (2010), 16–25. MR 2578821 |
Reference:
|
[29] Novello, M., Reboucas, M. J.: The stability of a rotating universe.. Astrophysical Journal 225 (1978), 719–724. 10.1086/156533 |
Reference:
|
[30] O’Neill, B.: Semi-Riemannian Geometry.. Academic Press, New York, 1983. MR 0719023 |
Reference:
|
[31] Özgür, C.: N(k)-quasi Einstein manifolds satisfying certain conditions.. Chaos, Solutions and Fractals 38 (2008), 1373–1377. Zbl 1154.53311, MR 2456527, 10.1016/j.chaos.2008.03.016 |
Reference:
|
[32] Özgür, C.: On some classes of super quasi-Einstein manifolds.. Chaos, Solitons and Fractals 40 (2009), 1156–1161. Zbl 1197.53059, MR 2526102, 10.1016/j.chaos.2007.08.070 |
Reference:
|
[33] Özgür, C.: On a class of generalized quasi-Einstein manifolds.. Applied Sciences, Balkan Society of Geometers 8 (2006), 138–141. Zbl 1103.53023, MR 2216533 |
Reference:
|
[34] Özgür, C., Sular, S.: On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl.. 13 (2008), 74–79. MR 2395278 |
Reference:
|
[35] Özgür, C., Sular, S.: On some properties of generalized quasi-Einstein manifolds.. Indian J. Math. 50 (2008), 297–302. Zbl 1168.53026, MR 2517733 |
Reference:
|
[36] Özgür, C., Sular, S.: Characterizations of generalized quasi-Einstein manifolds.. An. St. Univ. Ovidius Constanta 20 (2012), 407–416. Zbl 1274.53073, MR 2928431 |
Reference:
|
[37] Patterson, E. M.: Some theorems on Ricci-recurrent spaces.. Journal London Math. Soc. 27 (1952), 287–295. Zbl 0048.15604, MR 0048891, 10.1112/jlms/s1-27.3.287 |
Reference:
|
[38] Petrov, A. Z.: Einstein Spaces.. Pergamon Press, Oxford, 1949. MR 0244912 |
Reference:
|
[39] Ray, D.: Gödel-like cosmological solutions.. Math. Phys. 21, 12 (1980), 2797–2798. MR 0597598, 10.1063/1.524401 |
Reference:
|
[40] Sachs, R. K., Hu, W.: General Relativity for Mathematician.. Springer Verlag, New York, 1977. MR 0503498 |
Reference:
|
[41] Schouten, J. A.: Ricci-Calculus.. Springer, Berlin, 1954. Zbl 0057.37803 |
Reference:
|
[42] Taleshian, A., Hosseinzadeh, A. A.: Investigation of some conditions on N(k)-quasi Einstein manifolds.. Bull. Malays. Math. Sci. Soc. 34 (2011), 455–464. Zbl 1232.53041, MR 2823578 |
Reference:
|
[43] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group.. J. Differential Geom. 2 (1968), 161–184. Zbl 0167.19802, MR 0233314, 10.4310/jdg/1214428253 |
Reference:
|
[44] Zengin, F. Ö.: m-Projectively flat spacetimes.. Math. Reports 4, 4 (2012), 363–370. Zbl 1289.53089, MR 3086715 |
. |