Previous |  Up |  Next

Article

Title: On a Class of Generalized quasi-Einstein Manifolds with Applications to Relativity (English)
Author: Mallick, Sahanous
Author: De, Uday Chand
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 2
Year: 2016
Pages: 111-127
Summary lang: English
.
Category: math
.
Summary: Quasi Einstein manifold is a simple and natural generalization of Einstein manifold. The object of the present paper is to study some properties of generalized quasi Einstein manifolds. We also discuss $G(QE)_{4}$ with space-matter tensor and some properties related to it. Two non-trivial examples have been constructed to prove the existence of generalized quasi Einstein spacetimes. (English)
Keyword: Einstein manifolds
Keyword: quasi Einstein manifolds
Keyword: generalized quasi Einstein manifolds
Keyword: quasi-conformal curvature tensor
Keyword: space-matter tensor
MSC: 53B30
MSC: 53C25
MSC: 53C35
MSC: 53C50
idZBL: Zbl 1366.53033
.
Date available: 2017-03-16T12:50:23Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146065
.
Reference: [1] Ahsan, Z.: A symmetry property of the spacetime of general relativity in terms of the space-matter tensor.. Brazilian J. Phys. 26 (1996), 572–576.
Reference: [2] Ahsan, Z., Siddiqui, S. A.: On the divergence of the space-matter tensor in general relativity.. Adv. Studies Theor. Phys. 4 (2010), 543–556. Zbl 1216.83008, MR 2739701
Reference: [3] Ahsan, Z., Siddiqui, S. A.: Concircular curvature tensor and fluid spacetimes.. Int J. Theor. Phys. 48, 11 (2009), 3202–3212. Zbl 1255.83110, MR 2546699, 10.1007/s10773-009-0121-z
Reference: [4] Amur, K., Maralabhavi, Y. B.: On quasi-conformal flat spaces.. Tensor (N.S.) 31, 2 (1977), 194–198. MR 0461380
Reference: [5] Bejan, C. L.: Characterizations of quasi-Einstein manifolds.. An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N. S.) 53 (2007), 67–72. Zbl 1199.53078, MR 2522383
Reference: [6] Bejan, C. L., Binh, T. Q.: Generalized Einstein manifolds.. In: Differential Geometry and its Applications, Proceedings of the 10th International Conference on DGA2007, Olomouc, Czech Republic, 27–31 August 2007, World Sci. Publ., Hackensack, NJ, 2008, 57–64. Zbl 1172.53029, MR 2462782
Reference: [7] Besse, A. L.: Einstein Manifolds.. Classics in Mathematics, Springer-Verlag, Berlin, Heidelberg, 1987. Zbl 0613.53001, MR 2371700
Reference: [8] Chaki, M. C., Maity, R. K.: On quasi Einstein manifolds.. Publ. Math. Debrecen 57 (2000), 297–306. Zbl 0968.53030, MR 1798715
Reference: [9] Chaki, M. C.: On generalized quasi-Einstein manifolds.. Publ. Math. Debrecen 58 (2001), 683–691. Zbl 1062.53035, MR 1828719
Reference: [10] Chaki, M. C., Ray, S.: Spacetimes with covariant constant energy-momentum tensor.. Int. J. Theor. Phys. 35 (1996), 1027–1032. MR 1386778, 10.1007/BF02302387
Reference: [11] De, U. C., Guha, N., Kamilya, D.: On generalized Ricci-recurrent manifolds.. Tensor (N.S.) 56 (1995), 312–317. Zbl 0859.53009, MR 1413041
Reference: [12] De, U. C., Ghosh, G. C.: On quasi-Einstein manifolds.. Period. Math. Hungar. 48 (2004), 223–231. Zbl 1059.53030, MR 2077698, 10.1023/B:MAHU.0000038977.94711.ab
Reference: [13] De, U. C., Ghosh, G. C.: On conformally flat special quasi-Einstein manifolds.. Publ. Math. Debrecen 66 (2005), 129–136. Zbl 1075.53039, MR 2128688
Reference: [14] De, U. C., Ghosh, G. C.: On quasi Einstein and special quasi Einstein manifolds.. In: Proc. of the Conf. of Mathematics and its Applications, Kuwait University, Kuwait, 2004, 178–191. MR 2143298
Reference: [15] De, U. C., Gazi, A. K.: On nearly quasi Einstein manifolds.. Novi Sad J. Math. 38 (2008), 115–121. Zbl 1274.53066, MR 2526034
Reference: [16] De, U. C., Sarkar, A.: On the quasi-conformal curvature tensor of a $(k,\mu )$-contact metric manifolds.. Math. Rep. 14, 2 (2012), 115–129. MR 3051849
Reference: [17] De, U. C., Matsuyama, Y.: Quasi-conformally flat manifolds satisfying certain conditions on the Ricci tensor.. SUT J. Math. 42, 2 (2006), 295–303. MR 2419267
Reference: [18] De, U. C., Jun, J. B., Gazi, A. K.: Sasakian manifolds with quasi-conformal curvature tensor.. Bull. Korean Math. Soc. 45, 2 (2008), 313–319. Zbl 1148.53306, MR 2419079, 10.4134/BKMS.2008.45.2.313
Reference: [19] De, U. C., Mallick, S.: Spacetimes admitting $W_{2}$-curvature tensor.. Int. J. Geom. Methods Mod. Phys. 11 (2014), 1–8. Zbl 1291.53022, MR 3194321
Reference: [20] Hosseinzadeh, A., Taleshian, A.: On conformal and quasi-conformal curvature tensors of an N(k)-quasi-Einstein manifold.. Commun. Korean Math. Soc. 27 (2012), 317–326. Zbl 1252.53057, MR 2962525, 10.4134/CKMS.2012.27.2.317
Reference: [21] Debnath, P., Konar, A.: On quasi-Einstein manifolds and quasi-Einstein spacetimes.. Differ. Geom. Dyn. Syst. 12 (2010), 73–82. MR 2606548
Reference: [22] Gray, A.: Einstein-like manifolds which are not Einstein.. Geom. Dedicate 7 (1998), 259–280. MR 0505561
Reference: [23] Guha, S.: On a perfect fluid space-time admitting quasi conformal curvature tensor.. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 843–849. Zbl 1056.53022, MR 2021832
Reference: [24] Guha, S. R.: On quasi-Einstein and generalized quasi-Einstein manifolds.. Facta Univ., Ser. Mech. Automat. Control Robot. 3, 14 (2003), 821–842. Zbl 1056.53033, MR 2021831
Reference: [25] Güler, S., Demirbağ, S. A.: A study of generalized quasi-Einstein spacetimes with applications in general relativity.. Int. J. Theor. Phys. 55, 1 (2016), 548–562. Zbl 1337.83010, 10.1007/s10773-015-2692-1
Reference: [26] Mantica, C. A., Suh, Y. J.: Conformally symmetric manifolds and quasi conformally recurrent Riemannian manifolds.. Balkan J. Geom. Appl. 16, 1 (2011), 66–77. Zbl 1226.53007, MR 2785717
Reference: [27] Mantica, C. A., Suh, Y. J.: Pseudo-Z symmetric spacetimes.. J. Math. Phys. 55, 4 (2014), 1–12. MR 3390591, 10.1063/1.4871442
Reference: [28] Nagaraja, H. G.: On N(k)-mixed quasi-Einstein manifolds.. Eur. J. Pure Appl. Math. 3 (2010), 16–25. MR 2578821
Reference: [29] Novello, M., Reboucas, M. J.: The stability of a rotating universe.. Astrophysical Journal 225 (1978), 719–724. 10.1086/156533
Reference: [30] O’Neill, B.: Semi-Riemannian Geometry.. Academic Press, New York, 1983. MR 0719023
Reference: [31] Özgür, C.: N(k)-quasi Einstein manifolds satisfying certain conditions.. Chaos, Solutions and Fractals 38 (2008), 1373–1377. Zbl 1154.53311, MR 2456527, 10.1016/j.chaos.2008.03.016
Reference: [32] Özgür, C.: On some classes of super quasi-Einstein manifolds.. Chaos, Solitons and Fractals 40 (2009), 1156–1161. Zbl 1197.53059, MR 2526102, 10.1016/j.chaos.2007.08.070
Reference: [33] Özgür, C.: On a class of generalized quasi-Einstein manifolds.. Applied Sciences, Balkan Society of Geometers 8 (2006), 138–141. Zbl 1103.53023, MR 2216533
Reference: [34] Özgür, C., Sular, S.: On N(k)-quasi-Einstein manifolds satisfying certain conditions, Balkan J. Geom. Appl.. 13 (2008), 74–79. MR 2395278
Reference: [35] Özgür, C., Sular, S.: On some properties of generalized quasi-Einstein manifolds.. Indian J. Math. 50 (2008), 297–302. Zbl 1168.53026, MR 2517733
Reference: [36] Özgür, C., Sular, S.: Characterizations of generalized quasi-Einstein manifolds.. An. St. Univ. Ovidius Constanta 20 (2012), 407–416. Zbl 1274.53073, MR 2928431
Reference: [37] Patterson, E. M.: Some theorems on Ricci-recurrent spaces.. Journal London Math. Soc. 27 (1952), 287–295. Zbl 0048.15604, MR 0048891, 10.1112/jlms/s1-27.3.287
Reference: [38] Petrov, A. Z.: Einstein Spaces.. Pergamon Press, Oxford, 1949. MR 0244912
Reference: [39] Ray, D.: Gödel-like cosmological solutions.. Math. Phys. 21, 12 (1980), 2797–2798. MR 0597598, 10.1063/1.524401
Reference: [40] Sachs, R. K., Hu, W.: General Relativity for Mathematician.. Springer Verlag, New York, 1977. MR 0503498
Reference: [41] Schouten, J. A.: Ricci-Calculus.. Springer, Berlin, 1954. Zbl 0057.37803
Reference: [42] Taleshian, A., Hosseinzadeh, A. A.: Investigation of some conditions on N(k)-quasi Einstein manifolds.. Bull. Malays. Math. Sci. Soc. 34 (2011), 455–464. Zbl 1232.53041, MR 2823578
Reference: [43] Yano, K., Sawaki, S.: Riemannian manifolds admitting a conformal transformation group.. J. Differential Geom. 2 (1968), 161–184. Zbl 0167.19802, MR 0233314, 10.4310/jdg/1214428253
Reference: [44] Zengin, F. Ö.: m-Projectively flat spacetimes.. Math. Reports 4, 4 (2012), 363–370. Zbl 1289.53089, MR 3086715
.

Files

Files Size Format View
ActaOlom_55-2016-2_10.pdf 348.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo