Previous |  Up |  Next

Article

Title: Study of Stability in Nonlinear Neutral Differential Equations with Variable Delay Using Krasnoselskii–Burton’s Fixed Point (English)
Author: MESMOULI, Mouataz Billah
Author: Ardjouni, Abdelouaheb
Author: Djoudi, Ahcene
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 55
Issue: 2
Year: 2016
Pages: 129-142
Summary lang: English
.
Category: math
.
Summary: In this paper, we use a modification of Krasnoselskii’s fixed point theorem introduced by Burton (see [Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.] Theorem 3) to obtain stability results of the zero solution of the totally nonlinear neutral differential equation with variable delay \[ x^{\prime }\left( t\right) =-a\left( t\right) h\left( x\left( t\right) \right) +\frac{d}{dt}Q\left( t,x\left( t-\tau \left( t\right) \right) \right) +G\left( t,x\left( t\right) ,x\left( t-\tau \left( t\right) \right) \right) . \] The stability of the zero solution of this eqution provided that $h\left(0\right) =Q\left( t,0\right) =G\left( t,0,0\right) =0$. The Caratheodory condition is used for the functions $Q$ and $G$. (English)
Keyword: Fixed point
Keyword: stability
Keyword: delay
Keyword: stability
Keyword: nonlinear neutral equation
Keyword: large contraction mapping
Keyword: integral equation
MSC: 34K20
MSC: 34K30
MSC: 34K40
MSC: 47H10
idZBL: Zbl 06724368
.
Date available: 2017-03-16T12:52:05Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146066
.
Reference: [1] Adıvar, M., Islam, M. N., Raffoul, Y. N.: Separate contraction and existence of periodic solution in totally nonlinear delay differential equations.. Hacettepe Journal of Mathematics and Statistics, 41, 1 (2012), 1–13. MR 2976906
Reference: [2] Ardjouni, A., Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays.. Nonlin. Anal., T.M.A., 74, 6 (2011), 2062–2070. Zbl 1216.34069, MR 2781737, 10.1016/j.na.2010.10.050
Reference: [3] Ardjouni, A., Djoudi, A.: Fixed points and stability in linear neutral differential equations with variable delays.. Opuscula Mathematica, 32, 1 (2012), 5–19. MR 2852465, 10.7494/OpMath.2012.32.1.5
Reference: [4] Ardjouni, A., Derrardjia, I., Djoudi, A.: Stability in totally nonlinear neutral differential equations with variable delay.. Acta Math. Univ. Comenianae, 83, 1 (2014), 119–134. Zbl 1324.34142, MR 3178164
Reference: [5] Burton, T. A.: Integral equations, implicit functions, and fixed points.. Proc. Amer. Math. Soc., 124, 8 (1996), 2383–2390. Zbl 0873.45003, MR 1346965, 10.1090/S0002-9939-96-03533-2
Reference: [6] Burton, T. A.: Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem.. Nonlinear Stud., 9 (2002), 181–190. MR 1898587
Reference: [7] Burton, T. A.: Stability by Fixed Point Theory for Functional Differential Equations.. Dover Publications, New York, 2006. Zbl 1160.34001, MR 2281958
Reference: [8] Burton, T. A.: Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem.. Nonlinear Stud., 9 (2001), 181–190. MR 1898587
Reference: [9] Burton, T. A.: Stability by fixed point theory or Liapunov’s theory: A comparison.. Fixed Point Theory, 4 (2003), 15–32. MR 2031819
Reference: [10] Burton, T. A.: Fixed points and stability of a nonconvolution equation.. Proc. Amer. Math. Soc., 132 (2004), 3679–3687. Zbl 1050.34110, MR 2084091, 10.1090/S0002-9939-04-07497-0
Reference: [11] Burton, T. A., Kirk, C.: A point theorem of Krasnoselskii–Schaefe type.. Math. Nachr., 189 (1998), 23–31. MR 1492921, 10.1002/mana.19981890103
Reference: [12] Burton, T. A., Furumochi, T.: Krasnoselskii’s fixed point theorem and stability.. Nonlinear Anal., 49 (2002), 445–454. Zbl 1015.34046, MR 1886230, 10.1016/S0362-546X(01)00111-0
Reference: [13] Burton, T. A., Furumochi, T.: A note on stability by Schauder’s theorem.. Funkcial. Ekvac., 44 (2001), 73–82. Zbl 1158.34329, MR 1847837
Reference: [14] Burton, T. A., Furumochi, T.: Fixed points and problems in stability theory.. Dynam. Systems Appl., 10 (2001), 89–116. Zbl 1021.34042, MR 1844329
Reference: [15] Burton, T. A., Furumochi, T.: Krasnoselskii’s fixed point theorem and stability.. Nonlinear Anal., 49 (2002), 445–454. Zbl 1015.34046, MR 1886230, 10.1016/S0362-546X(01)00111-0
Reference: [16] Burton, T. A., Furumochi, T.: Asymptotic behavior of solutions of functional differential equations by fixed point theorems.. Dynam. Systems Appl., 11 (2002), 499–519. Zbl 1044.34033, MR 1946140
Reference: [17] Deham, H., Djoudi, A.: Periodic solutions for nonlinear differential equation with functional delay.. Georgian Math. J., 15, 4 (2008), 635–642. Zbl 1171.47061, MR 2494962
Reference: [18] Deham, H., Djoudi, A.: Existence of periodic solutions for neutral nonlinear differential equations with variable delay.. Electron. J. Differential Equations, 2010, 127 (2010), 1–8. Zbl 1203.34110
Reference: [19] Djoudi, A., Khemis, R.: Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays.. Georgian Math. J., 13, 1 (2006), 25–34. Zbl 1104.34052, MR 2242326
Reference: [20] Derrardjia, I., Ardjouni, A., Djoudi, A.: Stability by Krasnoselskii’s theorem in totally nonlinear neutral differential equation.. Opuscula Math., 33, 2 (2013), 255–272. MR 3023531, 10.7494/OpMath.2013.33.2.255
Reference: [21] Dib, Y. M., Maroun, M. R., Raffoul, Y. N.: Periodicity and stability in neutral nonlinear differential equations with functional delay.. Electronic Journal of Differential Equations, 2005, 142 (2005), 1–11. Zbl 1097.34049, MR 2181286
Reference: [22] Hatvani, L.: Annulus arguments in the stability theory for functional differential equations.. Differential and Integral Equations, 10 (1997), 975–1002. Zbl 0897.34060, MR 1741762
Reference: [23] Hale, J. K.: Theory of Functional Differential Equation.. Springer, New York, 1977. MR 0508721
Reference: [24] Raffoul, Y. R.: Stability in neutral nonlinear differential equations with functional delays using fixed-point theory.. Mathematical and Computer Modelling, 40 (2004), 691–700. Zbl 1083.34536, MR 2106161, 10.1016/j.mcm.2004.10.001
Reference: [25] Smart, D. S.: Fixed point theorems; Cambridge Tracts in Mathematics.. 66, Cambridge University Press, London–New York, 1974. MR 0467717
Reference: [26] Tunc, C.: Uniformly stability and boundedness of solutions of second order nonlinear delay differential equations.. Appl. Comput. Math., 10, 3 (2011), 449–462. Zbl 1281.34120, MR 2893512
Reference: [27] Tunc, C.: On the stability and boundedness of solutions of a class of non-autonomous differential equations of second order with multiple deviating arguments.. Afr. Mat., 23, 2 (2012), 249–259. MR 2958972, 10.1007/s13370-011-0033-y
Reference: [28] Tunc, C.: A note on the stability and boundedness of non-autonomous differential equations of second order with a variable deviating argument.. Afr. Mat., 25, 2 (2014), 417–425. Zbl 1306.34113, MR 3207028, 10.1007/s13370-012-0126-2
Reference: [29] Zhang, B.: Fixed points and stability in differential equations with variable delays.. Nonlinear Anal., 63 (2005), 233–242. Zbl 1159.34348, 10.1016/j.na.2005.02.081
.

Files

Files Size Format View
ActaOlom_55-2016-2_11.pdf 330.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo