[1] Adıvar, M., Islam, M. N., Raffoul, Y. N.:
Separate contraction and existence of periodic solution in totally nonlinear delay differential equations. Hacettepe Journal of Mathematics and Statistics, 41, 1 (2012), 1–13.
MR 2976906
[3] Ardjouni, A., Djoudi, A.:
Fixed points and stability in linear neutral differential equations with variable delays. Opuscula Mathematica, 32, 1 (2012), 5–19.
DOI 10.7494/OpMath.2012.32.1.5 |
MR 2852465
[4] Ardjouni, A., Derrardjia, I., Djoudi, A.:
Stability in totally nonlinear neutral differential equations with variable delay. Acta Math. Univ. Comenianae, 83, 1 (2014), 119–134.
MR 3178164 |
Zbl 1324.34142
[6] Burton, T. A.:
Liapunov functionals, fixed points and stability by Krasnoseskii’s theorem. Nonlinear Stud., 9 (2002), 181–190.
MR 1898587
[7] Burton, T. A.:
Stability by Fixed Point Theory for Functional Differential Equations. Dover Publications, New York, 2006.
MR 2281958 |
Zbl 1160.34001
[8] Burton, T. A.:
Liapunov functionals, fixed points, and stability by Krasnoselskii’s theorem. Nonlinear Stud., 9 (2001), 181–190.
MR 1898587
[9] Burton, T. A.:
Stability by fixed point theory or Liapunov’s theory: A comparison. Fixed Point Theory, 4 (2003), 15–32.
MR 2031819
[13] Burton, T. A., Furumochi, T.:
A note on stability by Schauder’s theorem. Funkcial. Ekvac., 44 (2001), 73–82.
MR 1847837 |
Zbl 1158.34329
[14] Burton, T. A., Furumochi, T.:
Fixed points and problems in stability theory. Dynam. Systems Appl., 10 (2001), 89–116.
MR 1844329 |
Zbl 1021.34042
[16] Burton, T. A., Furumochi, T.:
Asymptotic behavior of solutions of functional differential equations by fixed point theorems. Dynam. Systems Appl., 11 (2002), 499–519.
MR 1946140 |
Zbl 1044.34033
[17] Deham, H., Djoudi, A.:
Periodic solutions for nonlinear differential equation with functional delay. Georgian Math. J., 15, 4 (2008), 635–642.
MR 2494962 |
Zbl 1171.47061
[18] Deham, H., Djoudi, A.:
Existence of periodic solutions for neutral nonlinear differential equations with variable delay. Electron. J. Differential Equations, 2010, 127 (2010), 1–8.
Zbl 1203.34110
[19] Djoudi, A., Khemis, R.:
Fixed point techniques and stability for neutral nonlinear differential equations with unbounded delays. Georgian Math. J., 13, 1 (2006), 25–34.
MR 2242326 |
Zbl 1104.34052
[20] Derrardjia, I., Ardjouni, A., Djoudi, A.:
Stability by Krasnoselskii’s theorem in totally nonlinear neutral differential equation. Opuscula Math., 33, 2 (2013), 255–272.
DOI 10.7494/OpMath.2013.33.2.255 |
MR 3023531
[21] Dib, Y. M., Maroun, M. R., Raffoul, Y. N.:
Periodicity and stability in neutral nonlinear differential equations with functional delay. Electronic Journal of Differential Equations, 2005, 142 (2005), 1–11.
MR 2181286 |
Zbl 1097.34049
[22] Hatvani, L.:
Annulus arguments in the stability theory for functional differential equations. Differential and Integral Equations, 10 (1997), 975–1002.
MR 1741762 |
Zbl 0897.34060
[23] Hale, J. K.:
Theory of Functional Differential Equation. Springer, New York, 1977.
MR 0508721
[25] Smart, D. S.:
Fixed point theorems; Cambridge Tracts in Mathematics. 66, Cambridge University Press, London–New York, 1974.
MR 0467717
[26] Tunc, C.:
Uniformly stability and boundedness of solutions of second order nonlinear delay differential equations. Appl. Comput. Math., 10, 3 (2011), 449–462.
MR 2893512 |
Zbl 1281.34120
[27] Tunc, C.:
On the stability and boundedness of solutions of a class of non-autonomous differential equations of second order with multiple deviating arguments. Afr. Mat., 23, 2 (2012), 249–259.
DOI 10.1007/s13370-011-0033-y |
MR 2958972