Previous |  Up |  Next

Article

Title: Time discretizations for evolution problems (English)
Author: Vlasák, Miloslav
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 2
Year: 2017
Pages: 135-169
Summary lang: English
.
Category: math
.
Summary: The aim of this work is to give an introductory survey on time discretizations for liner parabolic problems. The theory of stability for stiff ordinary differential equations is explained on this problem and applied to Runge-Kutta and multi-step discretizations. Moreover, a natural connection between Galerkin time discretizations and Runge-Kutta methods together with order reduction phenomenon is discussed. (English)
Keyword: time discretizations
Keyword: parabolic PDEs
Keyword: stiff ODEs
Keyword: Runge-Kutta methods
Keyword: multi-step methods
MSC: 65J08
MSC: 65J10
MSC: 65L04
MSC: 65L20
idZBL: Zbl 06738486
idMR: MR3647039
DOI: 10.21136/AM.2017.0268-16
.
Date available: 2017-03-31T09:46:08Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146700
.
Reference: [1] Akrivis, G., Makridakis, C., Nochetto, R. H.: Galerkin and Runge-Kutta methods: unified formulation, a posteriori error estimates and nodal superconvergence.Numer. Math. 118 (2011), 429-456. Zbl 1228.65125, MR 2810802, 10.1007/s00211-011-0363-6
Reference: [2] Alexander, R.: Diagonally implicit Runge-Kutta methods for stiff O.D.E.'s.SIAM J. Numer. Anal. 14 (1977), 1006-1021. Zbl 0374.65038, MR 0458890, 10.1137/0714068
Reference: [3] Boffi, D.: Finite element approximation of eigenvalue problems.Acta Numer. 19 (2010), 1-120. Zbl 1242.65110, MR 2652780, 10.1017/S0962492910000012
Reference: [4] Brenner, P., Crouzeix, M., Thomée, V.: Single-step methods for inhomogeneous linear differential equations in Banach space.RAIRO, Anal. Numér. 16 (1982), 5-26. Zbl 0477.65040, MR 0648742, 10.1051/m2an/1982160100051
Reference: [5] Butcher, J. C.: Implicit Runge-Kutta processes.Math. Comput. 18 (1964), 50-64. Zbl 0123.11701, MR 0159424, 10.2307/2003405
Reference: [6] Coddington, E. A., Levinson, N.: Theory of Ordinary Differential Equations.McGraw-Hill Book Company, New York (1955). Zbl 0064.33002, MR 0069338
Reference: [7] Crouzeix, M., Hundsdorfer, W. H., Spijker, M. N.: On the existence of solutions to the algebraic equations in implicit Runge-Kutta methods.BIT 23 (1983), 84-91. Zbl 0506.65030, MR 0689606, 10.1007/BF01937328
Reference: [8] Crouzeix, M., Lisbona, F. J.: The convergence of variable-stepsize, variable-formula, multistep methods.SIAM J. Numer. Anal. 21 (1984), 512-534. Zbl 0542.65038, MR 0744171, 10.1137/0721037
Reference: [9] Crouzeix, M., Raviart, P.-A.: Approximation des équations d'évolution linéaires par des méthodes à pas multiples.C. R. Acad. Sci., Paris, Sér. A 283 (1976), 367-370. Zbl 0361.65064, MR 0426434
Reference: [10] Curtiss, C. F., Hirschfelder, J. O.: Integration of stiff equations.Proc. Natl. Acad. Sci. USA 38 (1952), 235-243. Zbl 0046.13602, MR 0047404, 10.1073/pnas.38.3.235
Reference: [11] Dahlquist, G.: Convergence and stability in the numerical integration of ordinary differential equations.Math. Scand. 4 (1956), 33-53. Zbl 0071.11803, MR 0080998, 10.7146/math.scand.a-10454
Reference: [12] Dekker, K.: On the iteration error in algebraically stable Runge-Kutta methods.Report NW 138/82, Math. Centrum, Amsterdam (1982).
Reference: [13] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow.Springer Series in Computational Mathematics 48, Springer, Cham (2015). Zbl 06467550, MR 3363720, 10.1007/978-3-319-19267-3
Reference: [14] Ehle, B. L.: On Padé approximations to the exponential function and A-stable methods for the numerical solution of initial value problems.Thesis (Ph.D)-University of Waterloo, Ontario (1969). MR 2716012
Reference: [15] Frank, R., Schneid, J., Ueberhuber, C. W.: Order results for implicit Runge-Kutta methods applied to stiff systems.SIAM J. Numer. Anal. 22 (1985), 515-534. Zbl 0577.65056, MR 0787574, 10.1137/0722031
Reference: [16] Gear, C. W.: Numerical Initial Value Problems in Ordinary Differential Equations.\hbox{Prentice}-Hall, Englewood Cliffs (1971). Zbl 1145.65316, MR 0315898
Reference: [17] Gear, C. W., Tu, K. W.: The effect of variable mesh size on the stability of multistep methods.SIAM J. Numer. Anal. 11 (1974), 1025-1043. Zbl 0292.65041, MR 0368436, 10.1137/0711079
Reference: [18] Grigorieff, R. D.: Stability of multistep-methods on variable grids.Numer. Math. 42 (1983), 359-377. Zbl 0554.65051, MR 0723632, 10.1007/BF01389580
Reference: [19] Grigorieff, R. D., Pfeiffer, H. J.: Numerik gewöhnlicher Differentialgleichungen. Band 2: Mehrschrittverfahren.Teubner Studienbücher: Mathematik. B. G. Teubner, Stuttgart (1977). Zbl 0372.65025, MR 0657222, 10.1007/978-3-322-91202-2
Reference: [20] Guillou, A., Soulé, J. L.: La résolution numérique des problèmes différentiels aux conditions initiales par des méthodes de collocation.Rev. Franç. Inform. Rech. Opér. 3 (1969), 17-44. Zbl 0214.15005, MR 0280008, 10.1051/m2an/196903r300171
Reference: [21] Hairer, E., Nørsett, S. P., Wanner, G.: Solving Ordinary Differential Equations. I: Nonstiff Problems.Springer Series in Computational Mathematics 8, Springer, Berlin (1993). Zbl 0789.65048, MR 1227985, 10.1007/978-3-540-78862-1
Reference: [22] Hairer, E., Wanner, G.: Solving Ordinary Differential Equations. II: Stiff and Differential-Algebraic Problems.Springer Series in Computational Mathematics 14, Springer, Berlin (1996). Zbl 0859.65067, MR 1439506, 10.1007/978-3-642-05221-7
Reference: [23] Henrici, P.: Discrete Variable Methods in Ordinary Differential Equations.John Wiley and Sons, New York (1962). Zbl 0112.34901, MR 0135729
Reference: [24] Hochbruck, M., Ostermann, A.: Exponential integrators.Acta Numerica 19 (2010), 209-286. Zbl 1242.65109, MR 2652783, 10.1017/S0962492910000048
Reference: [25] Hulme, B. L.: One-step piecewise polynomial Galerkin methods for initial value problems.Math. Comput. 26 (1972), 415-426. Zbl 0265.65038, MR 0321301, 10.2307/2005168
Reference: [26] Kuntzmann, J.: Neuere Entwicklungen der Methode von Runge und Kutta.Z. Angew. Math. Mech. 41 (1961), T28--T31. Zbl 0106.10403, 10.1002/zamm.19610411317
Reference: [27] Lubich, C.: On the convergence of multistep methods for nonlinear stiff differential equations.Numer. Math. 58 (1991), 839-853. Zbl 0729.65055, MR 1098868, 10.1007/BF01385657
Reference: [28] Padé, H.: Sur la représentation approchée d'une fonction par des fractions rationnelles.Ann. Sci. Éc. Norm. Supér. (3) 9 (1892), 3-93 \99999JFM99999 24.0360.02. MR 1508880, 10.24033/asens.378
Reference: [29] Prothero, A., Robinson, A.: On the stability and accuracy of one-step methods for solving stiff systems of ordinary differential equations.Math. Comput. 28 (1974), 145-162. Zbl 0309.65034, MR 0331793, 10.2307/2005822
Reference: [30] Rektorys, K.: The Method of Discretization in Time and Partial Differential Equations.Mathematics and Its Applications (East European Series) 4, D. Reidel Publishing, Dordrecht; SNTL-Publishers of Technical Literature, Praha (1982). Zbl 0505.65029, MR 0689712
Reference: [31] Roskovec, F.: Numerical solution of nonlinear convection-diffusion problems by adaptive methods.Master Thesis (2014), Czech.
Reference: [32] Toro, E. F.: Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction, Springer, Berlin.(1999). Zbl 0923.76004, MR 1717819, 10.1007/978-3-662-03915-1
Reference: [33] Vlasák, M., Dolejší, V., Hájek, J.: A priori error estimates of an extrapolated space-time discontinuous Galerkin method for nonlinear convection-diffusion problems.Numer. Methods Partial Differ. Equations 27 (2011), 1456-1482. Zbl 1237.65105, MR 2838303, 10.1002/num.20591
Reference: [34] Vlasák, M., Vlasáková, Z.: Derivation of BDF coefficients for equidistant time step.Programs and Algorithms of Numerical Mathematics 15 Proc. Seminar, Dolní Maxov, Academy of Sciences of the Czech Republic, Institute of Mathematics, Praha (2010), 221-226. Zbl 1340.65137, MR 3203769
Reference: [35] Neumann, J. von: Eine Spektraltheorie für allgemeine Operatoren eines unitären Raumes.Math. Nachr. 4 (1951), 258-281. Zbl 0042.12301, MR 0043386, 10.1002/mana.3210040124
Reference: [36] Widlund, O. B.: A note on unconditionally stable linear multistep methods.BIT, Nord. Tidskr. Inf.-behandl. 7 (1967), 65-70. Zbl 0178.18502, MR 0215533, 10.1007/BF01934126
Reference: [37] Wright, K.: Some relationships between implicit Runge-Kutta, collocation Lanczos $\tau$ methods, and their stability properties.BIT, Nord. Tidskr. Inf.-behandl. 10 (1970), 217-227. Zbl 0208.41602, MR 0266439, 10.1007/BF01936868
.

Files

Files Size Format View
AplMat_62-2017-2_4.pdf 496.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo