Previous |  Up |  Next

Article

Title: DG method for numerical pricing of multi-asset Asian options—the case of options with floating strike (English)
Author: Hozman, Jiří
Author: Tichý, Tomáš
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 2
Year: 2017
Pages: 171-195
Summary lang: English
.
Category: math
.
Summary: Option pricing models are an important part of financial markets worldwide. The PDE formulation of these models leads to analytical solutions only under very strong simplifications. For more general models the option price needs to be evaluated by numerical techniques. First, based on an ideal pure diffusion process for two risky asset prices with an additional path-dependent variable for continuous arithmetic average, we present a general form of PDE for pricing of Asian option contracts on two assets. Further, we focus only on one subclass---Asian options with floating strike---and introduce the concept of the dimensionality reduction with respect to the payoff leading to PDE with two spatial variables. Then the numerical option pricing scheme arising from the discontinuous Galerkin method is developed and some theoretical results are also mentioned. Finally, the aforementioned model is supplemented with numerical results on real market data. (English)
Keyword: option pricing
Keyword: discontinuous Galerkin method
Keyword: path-dependent option
Keyword: basket option
Keyword: floating strike
MSC: 35Q91
MSC: 65M60
MSC: 91G20
MSC: 91G60
MSC: 91G80
idZBL: Zbl 06738487
idMR: MR3649516
DOI: 10.21136/AM.2017.0273-16
.
Date available: 2017-03-31T09:47:12Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146701
.
Reference: [1] Achdou, Y., Pironneau, O.: Computational Methods for Option Pricing.Frontiers in Applied Mathematics 30, Society for Industrial and Applied Mathematics, Philadelphia (2005). Zbl 1078.91008, MR 2159611, 10.1137/1.9780898717495
Reference: [2] Black, F., Scholes, M.: The pricing of options and corporate liabilities.J. Polit. Econ. 81 (1973), 637-654. Zbl 1092.91524, MR 3363443, 10.1086/260062
Reference: [3] Boyle, P., Broadie, M., Glasserman, P.: Monte Carlo methods for security pricing.J. Econ. Dyn. Control 21 (1997), 1267-1321. Zbl 0901.90007, MR 1470283, 10.1016/S0165-1889(97)00028-6
Reference: [4] Cen, Z., Xu, A., Le, A.: A hybrid finite difference scheme for pricing Asian options.Appl. Math. Comput. 252 (2015), 229-239. Zbl 1338.91150, MR 3305101, 10.1016/j.amc.2014.12.007
Reference: [5] Ciarlet, P. G.: The Finite Element Method for Elliptic Problems.Studies in Mathematics and Its Applications 4, North-Holland Publishing Company, Amsterdam (1978). Zbl 0383.65058, MR 0520174, 10.1016/s0168-2024(08)x7014-6
Reference: [6] Cont, R., Tankov, P.: Financial Modelling with Jump Processes.Chapman & Hall/CRC Financial Mathematics Series, Chapman & Hall/CRC, Boca Raton (2004). Zbl 1052.91043, MR 2042661, 10.1201/9780203485217
Reference: [7] Cox, J. C., Ross, S. A., Rubinstein, M.: Option pricing: A simplified approach.J. Financ. Econ. 7 (1979), 229-263. Zbl 1131.91333, 10.1016/0304-405X(79)90015-1
Reference: [8] Dolejší, V., Feistauer, M.: Error estimates of the discontinuous Galerkin method for nonlinear nonstationary convection-diffusion problems.Numer. Funct. Anal. Optimization 26 (2005), 349-383. Zbl 1078.65078, MR 2153838, 10.1081/NFA-200067298
Reference: [9] Dolejší, V., Feistauer, M.: Discontinuous Galerkin Method. Analysis and Applications to Compressible Flow.Springer Series in Computational Mathematics 48, Springer, Cham (2015). Zbl 06467550, MR 3363720, 10.1007/978-3-319-19267-3
Reference: [10] Dubois, F., Lelièvre, T.: Efficient pricing of Asian options by the PDE approach.J. Comput. Finance 8 (2005), 55-63. 10.21314/JCF.2005.138
Reference: [11] Feistauer, M., Felcman, J., Straškraba, I.: Mathematical and Computational Methods for Compressible Flow.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2003). Zbl 1028.76001, MR 2261900
Reference: [12] Hale, J. K.: Ordinary Differential Equations.Pure and Applied Mathematics 21, Wiley-Interscience a division of John Wiley & Sons, New York (1969). Zbl 0186.40901, MR 0419901
Reference: [13] Harrison, J. M., Kreps, D. M.: Martingales and arbitrage in multiperiod securities markets.J. Econ. Theory 20 (1979), 381-408. Zbl 0431.90019, MR 0540823, 10.1016/0022-0531(79)90043-7
Reference: [14] Haug, E. G.: The Complete Guide to Option Pricing Formulas McGraw-Hill, New York.(2006).
Reference: [15] Hecht, F.: New development in freefem++.J. Numer. Math. 20 (2012), 251-265. Zbl 1266.68090, MR 3043640, 10.1515/jnum-2012-0013
Reference: [16] Hozman, J.: Discontinuous Galerkin method for the numerical solution of option pricing.Aplimat -- J. Appl. Math. 5 (2012), 197-206.
Reference: [17] Hozman, J.: Analysis of the discontinuous Galerkin method applied to the European option pricing problem.AIP Conference Proceedings 1570 (2013), 227-234. 10.1063/1.4854760
Reference: [18] Hozman, J., Tichý, T.: Black-Scholes option pricing model: Comparison of $h$-convergence of the DG method with respect to boundary condition treatment.ECON -- Journal of Economics, Management and Business 24 (2014), 141-152 \bgroup\spaceskip.28em plus.16em minus.12em.
Reference: [19] Hozman, J., Tichý, T., Cvejnová, D.: A discontinuous Galerkin method for two-dimensional PDE models of Asian options.AIP Conference Proceedings 1738 (2016), Article no. 080011 \99999DOI99999 10.1063/1.4951846 \egroup.
Reference: [20] J. E. Ingersoll, Jr.: Theory of Financial Decision Making.Rowman & Littlefield Publishers, New Jersey (1987).
Reference: [21] Kufner, A.: Weighted Sobolev Spaces.Teubner-Texte zur Mathematik 31, BSB B. G. Teubner Verlagsgesellschaft, Leipzig (1980). Zbl 0455.46034, MR 0664599
Reference: [22] Kumar, A., Waikos, A., Chakrabarty, S. P.: Pricing of average strike Asian call option using numerical PDE methods.Int. J. Pure Appl. Math. 76 (2012), 709-725.
Reference: [23] Merton, R. C.: Theory of rational option pricing.Bell J. Econ. Manage. 4 (1973), 141-183. Zbl 1257.91043, MR 0496534, 10.2307/3003143
Reference: [24] Reed, W. H., Hill, T. R.: Triangular mesh methods for the neutron transport equation.Technical Report LA-UR-73-479, Los Alamos Scientific Laboratory (1973).
Reference: [25] Rivière, B.: Discontinuous Galerkin Methods for Solving Elliptic and Parabolic Equations. Theory and Implementation.Frontiers in Applied Mathematics 35, Society for Industrial and Applied Mathematics, Philadelphia (2008). Zbl 1153.65112, MR 2431403, 10.1137/1.9780898717440
Reference: [26] Shreve, S., Večeř, J.: Options on a traded account: Vacation calls, vacation puts and passport options.Finance Stoch. 4 (2000), 255-274. Zbl 0997.91020, MR 1779579, 10.1007/s007800050073
Reference: [27] Večeř, J.: Unified pricing of Asian options.Risk 15 (2002), 113-116.
Reference: [28] Zeidler, E.: Nonlinear Functional Analysis and Its Applications. II/A: Linear Monotone Operators.Springer, New York (1990). Zbl 0684.47028, MR 1033497, 10.1007/978-1-4612-0985-0
.

Files

Files Size Format View
AplMat_62-2017-2_5.pdf 437.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo