Previous |  Up |  Next

Article

Title: The classic differential evolution algorithm and its convergence properties (English)
Author: Knobloch, Roman
Author: Mlýnek, Jaroslav
Author: Srb, Radek
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 2
Year: 2017
Pages: 197-208
Summary lang: English
.
Category: math
.
Summary: Differential evolution algorithms represent an up to date and efficient way of solving complicated optimization tasks. In this article we concentrate on the ability of the differential evolution algorithms to attain the global minimum of the cost function. We demonstrate that although often declared as a global optimizer the classic differential evolution algorithm does not in general guarantee the convergence to the global minimum. To improve this weakness we design a simple modification of the classic differential evolution algorithm. This modification limits the possible premature convergence to local minima and ensures the asymptotic global convergence. We also introduce concepts that are necessary for the subsequent proof of the asymptotic global convergence of the modified algorithm. We test the classic and modified algorithm by numerical experiments and compare the efficiency of finding the global minimum for both algorithms. The tests confirm that the modified algorithm is significantly more efficient with respect to the global convergence than the classic algorithm. (English)
Keyword: optimization
Keyword: cost function
Keyword: global minimum
Keyword: global convergence
Keyword: local convergence
Keyword: differential evolution algorithm
Keyword: optimal solution set
Keyword: convergence in probability
Keyword: numerical testing
MSC: 60F05
MSC: 60G20
MSC: 65K05
idZBL: Zbl 06738488
idMR: MR3647040
DOI: 10.21136/AM.2017.0274-16
.
Date available: 2017-03-31T09:47:44Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146702
.
Reference: [1] Hu, Z., Xiong, S., Su, Q., Zhang, X.: Sufficient conditions for global convergence of differential evolution algorithm.J. Appl. Math. 2013 (2013), Article ID 139196, 14 pages. MR 3122108, 10.1155/2013/193196
Reference: [2] Mlýnek, J., Knobloch, R., Srb, R.: Mathematical model of the metal mould surface temperature optimization.AIP Conference Proceedings 1690 AIP Publishing, Melville (2015), Article No. 020018, 8 pages. 10.1063/1.4936696
Reference: [3] Mlýnek, J., Knobloch, R., Srb, R.: Optimization of a heat radiation intensity and temperature field on the mould surface.ECMS 2016 Proceedings, 30th European Conference on Modelling and Simulation Regensburg, Germany (2016), 425-431. MR 3203813, 10.7148/2016-0425
Reference: [4] Price, K. V.: Differential evolution: a fast and simple numerical optimizer.Proceedings of North American Fuzzy Information Processing Berkeley (1996), 524-527. 10.1109/NAFIPS.1996.534790
Reference: [5] Price, K. V., Storn, R. M., Lampien, J. A.: Differential Evolution. A Practical Approach to Global Optimization.Natural Computing Series. Springer, Berlin (2005). Zbl 1186.90004, MR 2191377, 10.1007/3-540-31306-0
Reference: [6] Simon, D.: Evolutionary Optimization Algorithms. Biologically Inspired and Population-Based Approaches to Computer Intelligence.John Wiley & Sons, Hoboken (2013). Zbl 1280.68008, MR 3362741
Reference: [7] Storn, R. M., Price, K. V.: Differential evolution---a simple and efficient heuristics for global optimization over continuous spaces.J. Glob. Optim. 11 (1997), 341-359. Zbl 0888.90135, MR 1479553, 10.1023/A:1008202821328
.

Files

Files Size Format View
AplMat_62-2017-2_6.pdf 592.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo