Previous |  Up |  Next

Article

Title: Some relations satisfied by Hermite-Hermite matrix polynomials (English)
Author: Shehata, Ayman
Author: Upadhyaya, Lalit Mohan
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 2
Year: 2017
Pages: 145-162
Summary lang: English
.
Category: math
.
Summary: The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite matrix polynomials. Finally, we establish general families and several new results concerning generalized Hermite-Hermite matrix polynomials. (English)
Keyword: Hermite-Hermite polynomials
Keyword: matrix generating functions
Keyword: orthogonality property
Keyword: Rodrigues formula
Keyword: associated Hermite-Hermite polynomials
Keyword: generalized Hermite-Hermite matrix polynomials
MSC: 15A60
MSC: 33C45
MSC: 33C50
MSC: 33C80
MSC: 34A25
MSC: 44A45
idZBL: Zbl 06738576
idMR: MR3660172
DOI: 10.21136/MB.2016.0001-15
.
Date available: 2017-05-23T09:58:51Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146749
.
Reference: [1] Defez, E., Jódar, L.: Chebyshev matrix polynomials and second order matrix differential equations.Util. Math. 61 (2002), 107-123. Zbl 0998.15034, MR 1899321
Reference: [2] Defez, E., Jódar, L., Law, A.: Jacobi matrix differential equation, polynomial solutions, and their properties.Comput. Math. Appl. 48 (2004), 789-803. Zbl 1069.33007, MR 2105252, 10.1016/j.camwa.2004.01.011
Reference: [3] Defez, E., Jódar, L., Law, A., Ponsoda, E.: Three-term recurrences and matrix orthogonal polynomials.Util. Math. 57 (2000), 129-146. Zbl 0962.05064, MR 1760180
Reference: [4] Dunford, N., Schwartz, J. T.: Linear Operators. I. General Theory.Pure and Applied Mathematics 7. Interscience Publishers, New York (1958). Zbl 0084.10402, MR 0117523
Reference: [5] Durán, A. J., Assche, W. Van: Orthogonal matrix polynomials and higher-order recurrence relations.Linear Algebra Appl. 219 (1995), 261-280. Zbl 0827.15027, MR 1327404, 10.1016/0024-3795(93)00218-O
Reference: [6] Jódar, L., Company, R.: Hermite matrix polynomials and second order matrix differential equations.Approximation Theory Appl. 12 (1996), 20-30. Zbl 0858.15014, MR 1465570
Reference: [7] Jódar, L., Company, R., Navarro, E.: Laguerre matrix polynomials and system of second-order differential equations.Appl. Numer. Math. 15 (1994), 53-63. Zbl 0821.34010, MR 1290597, 10.1016/0168-9274(94)00012-3
Reference: [8] Jódar, L., Company, R., Ponsoda, E.: Orthogonal matrix polynomials and systems of second order differential equations.Differ. Equ. Dyn. Syst. 3 (1995), 269-288. Zbl 0892.33004, MR 1386749
Reference: [9] Jódar, L., Defez, E.: On Hermite matrix polynomials and Hermite matrix function.Approximation Theory Appl. 14 (1998), 36-48. Zbl 0911.15015, MR 1651470
Reference: [10] Khammash, G. S., Shehata, A.: On Humbert matrix polynomials.Asian J. Current Engineering and Maths. (AJCEM) 1 (2012), 232-240.
Reference: [11] Metwally, M. S., Mohamed, M. T., Shehata, A.: On Hermite-Hermite matrix polynomials.Math. Bohem. 133 (2008), 421-434. Zbl 1199.15079, MR 2472489
Reference: [12] Metwally, M. S., Mohamed, M. T., Shehata, A.: On pseudo Hermite matrix polynomials of two variables.Banach J. Math. Anal. (eletronic only) 4 (2010), 169-178. Zbl 1190.33016, MR 2644026, 10.15352/bjma/1297117251
Reference: [13] Rainville, E. D.: Special Functions.Macmillan, New York (1960). Zbl 0092.06503, MR 0107725
Reference: [14] Sayyed, K. A. M., Metwally, M. S., Batahan, R. S.: On generalized Hermite matrix polynomials.Electron. J. Linear Algebra (eletronic only) 10 (2003), 272-279. Zbl 1038.33005, MR 2025009
Reference: [15] Shehata, A.: On $p$ and $q$-Horn's matrix function of two complex variables.Appl. Math., Irvine 2 (2011), 1437-1442. MR 3000027, 10.4236/am.2011.212203
Reference: [16] Shehata, A.: On Tricomi and Hermite-Tricomi matrix functions of complex variable.Commun. Math. Appl. 2 (2011), 97-109. Zbl 1266.33012, MR 3000027
Reference: [17] Shehata, A.: A new extension of Gegenbauer matrix polynomials and their properties.Bull. Int. Math. Virtual Inst. 2 (2012), 29-42. MR 3149829
Reference: [18] Shehata, A.: A new extension of Hermite-Hermite matrix polynomials and their properties.Thai J. Math. 10 (2012), 433-444. Zbl 1254.33005, MR 3001864
Reference: [19] Shehata, A.: On pseudo Legendre matrix polynomials.Int. J. Math. Sci. Eng. Appl. 6 (2012), 251-258. MR 3057762
Reference: [20] Shehata, A.: Certain $pl(m,n)$-Kummer matrix function of two complex variables under differential operator.Appl. Math., Irvine 4 (2013), 91-96. 10.4236/am.2013.41016
Reference: [21] Shehata, A.: On Rainville's matrix polynomials.Sylwan Journal 158 (2014), 158-178. MR 3248615
Reference: [22] Shehata, A.: On Rice's matrix polynomials.Afr. Mat. 25 (2014), 757-777. Zbl 06369945, MR 3248615, 10.1007/s13370-013-0149-3
Reference: [23] Shehata, A.: Connections between Legendre with Hermite and Laguerre matrix polynomials.Gazi University Journal of Science 28 (2015), 221-230. Avaible at http://gujs.gazi.edu.tr/article/view/1060001688/5000116963.
Reference: [24] Shehata, A.: New kinds of hypergeometric matrix functions.British Journal of Mathematics and Computer Science. 5 (2015), 92-103. MR 3723826, 10.9734/BJMCS/2015/11492
Reference: [25] Shehata, A.: On a new family of the extended generalized Bessel-type matrix polynomials.Mitteilungen Klosterneuburg J. 65 (2015), 100-121.
Reference: [26] Shehata, A.: Some relations on Gegenbauer matrix polynomials.Review of Computer Engineering Research 2 (2015), 1-21. Avaible at http://www.pakinsight.com/pdf-files/RCER-2015-2\%281\%29-1-21.pdf. 10.18488/journal.76/2015.2.1/76.1.1.21
Reference: [27] Shehata, A.: Some relations on Humbert matrix polynomials.Math. Bohem. 141 (2016), 407-429. Zbl 06674853, MR 3576790, 10.21136/MB.2016.0019-14
Reference: [28] Shehata, A.: Some relations on Konhauser matrix polynomials.Miskolc Math. Notes 17 (2016), 605-633. MR 3527907, 10.18514/MMN.2016.1126
Reference: [29] Sinap, A., Assche, W. Van: Orthogonal matrix polynomials and applications.Proc. 6th Int. Congress on Computational and Applied Mathematics (F. Broeckx at al., eds). Leuven, 1994 J. Comput. Appl. Math. 66, Elsevier Science, Amsterdam (1996), 27-52. Zbl 0863.42018, MR 1393717, 10.1016/0377-0427(95)00193-X
Reference: [30] Upadhyaya, L. M., Shehata, A.: On Legendre matrix polynomials and its applications.Inter. Tran. Math. Sci. Comput. 4 (2011), 291-310. MR 3057762
Reference: [31] Upadhyaya, L. M., Shehata, A.: A new extension of generalized Hermite matrix polynomials.Bull. Malays. Math. Sci. Soc. (2) 38 (2015), 165-179. Zbl 06418341, MR 3394046, 10.1007/s40840-014-0010-3
.

Files

Files Size Format View
MathBohem_142-2017-2_4.pdf 281.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo