Previous |  Up |  Next

Article

Title: Goldie extending elements in modular lattices (English)
Author: Nimbhorkar, Shriram K.
Author: Shroff, Rupal C.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 2
Year: 2017
Pages: 163-180
Summary lang: English
.
Category: math
.
Summary: The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element $a$ of a lattice $L$ with $0$ is said to be a Goldie extending element if and only if for every $b \leq a$ there exists a direct summand $c$ of $a$ such that $b \wedge c$ is essential in both $b$ and $c$. Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations of a decomposition of a Goldie extending element in such a lattice are given. The concepts of an $a$-injective and an $a$-ejective element are introduced in a lattice and their properties related to extending elements are discussed. (English)
Keyword: modular lattice
Keyword: Goldie extending element
MSC: 06B10
MSC: 06C05
idZBL: Zbl 06738577
idMR: MR3660173
DOI: 10.21136/MB.2016.0049-14
.
Date available: 2017-05-23T09:59:22Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146750
.
Reference: [1] Akalan, E., Birkenmeier, G. F., Tercan, A.: Corrigendum to: Goldie extending modules.Commun. Algebra 41 (2013), page 2005. Original article ibid. {\it 37} (2009), 663-683 and first correction in {\it 38} (2010), 4747-4748. Zbl 1278.16005, MR 3062842, 10.1080/00927872.2011.651766
Reference: [2] Călugăreanu, G.: Lattice Concepts of Module Theory.Kluwer Texts in the Mathematical Sciences 22. Kluwer Academic Publishers, Dordrecht (2000). Zbl 0959.06001, MR 1782739, 10.1007/978-94-015-9588-9
Reference: [3] Chatters, A. W., Hajarnavis, C. R.: Rings in which every complement right ideal is a direct summand.Q. J. Math., Oxf. (2) 28 (1977), 61-80. Zbl 0342.16023, MR 0437595, 10.1093/qmath/28.1.61
Reference: [4] Crawley, P., Dilworth, R. P.: Algebraic Theory of Lattices.Prentice-Hall, Englewood Cliffs, New Jersey (1973). Zbl 0494.06001
Reference: [5] Dung, N. V., Huynh, D. V., Smith, P. F., Wisbauer, R.: Extending Modules.Pitman Research Notes in Mathematics Series 313. Longman Scientific & Technical, Harlow (1994). Zbl 0841.16001, MR 1312366
Reference: [6] Er, N.: Rings whose modules are direct sums of extending modules.Proc. Am. Math. Soc. 137 (2009), 2265-2271. Zbl 1176.16006, MR 2495259, 10.1090/S0002-9939-09-09807-4
Reference: [7] Grätzer, G.: General Lattice Theory.Birkhäuser, Basel (1998). Zbl 0909.06002, MR 1670580
Reference: [8] Grzeszczuk, P., Puczyłowski, E. R.: On Goldie and dual Goldie dimensions.J. Pure Appl. Algebra 31 (1984), 47-54. Zbl 0528.16010, MR 0738204, 10.1016/0022-4049(84)90075-6
Reference: [9] Harmanci, A., Smith, P. F.: Finite direct sums of CS-modules.Houston J. Math. 19 (1993), 523-532. Zbl 0802.16006, MR 1251607
Reference: [10] Kamal, M. A., Sayed, A.: On generalized extending modules.Acta Math. Univ. Comen., New Ser. 76 (2007), 193-200. Zbl 1156.16005, MR 2385032
Reference: [11] Keskin, D.: An approach to extending and lifting modules by modular lattices.Indian J. Pure Appl. Math. 33 (2002), 81-86. Zbl 0998.16004, MR 1879786
Reference: [12] Lam, T. Y.: Lectures on Modules and Rings.Graduate Texts in Mathematics 189. Springer, New York (1999). Zbl 0911.16001, MR 1653294, 10.1007/978-1-4612-0525-8
Reference: [13] Szász, G.: Introduction to Lattice Theory.Academic Press, New York; Akadémiai Kiadó, Budapest (1963). Zbl 0126.03703, MR 0166118
.

Files

Files Size Format View
MathBohem_142-2017-2_5.pdf 301.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo