Previous |  Up |  Next

Article

Keywords:
$q$-binomial coefficient; $q$-binomial theorem; pentagonal number theorem
Summary:
Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.
References:
[1] Andrews, G. E.: The Theory of Partitions. Encyclopedia of Mathematics and Its Applications, Vol. 2. Section: Number Theory. Reading, Advanced Book Program, Addison-Wesley Publishing Company, Massachusetts (1976). DOI 10.1002/zamm.19790590632 | MR 0557013 | Zbl 0655.10001
[2] Andrews, G. E.: Euler's pentagonal number theorem. Math. Mag. 56 (1983), 279-284. DOI 10.2307/2690367 | MR 0720648 | Zbl 0523.01011
[3] Berkovich, A., Garvan, F. G.: Some observations on Dyson's new symmetries of partitions. J. Comb. Theory, Ser. A 100 (2002), 61-93. DOI 10.1006/jcta.2002.3281 | MR 1932070 | Zbl 1016.05003
[4] Bromwich, T. J.: An Introduction to the Theory of Infinite Series. Chelsea Publishing Company, New York (1991). Zbl 0901.40001
[5] Ekhad, S. B., Zeilberger, D.: The number of solutions of $X^2=0$ in triangular matrices over GF($q$). Electron. J. Comb. 3 (1996), Research paper R2, 2 pages printed version in J. Comb. 3 1996 25-26. MR 1364064 | Zbl 0851.15010
[6] Petkovšek, M., Wilf, H. S., Zeilberger, D.: $A=B$. With foreword by Donald E. Knuth, A. K. Peters, Wellesley (1996). MR 1379802 | Zbl 0848.05002
[7] Shanks, D.: A short proof of an identity of Euler. Proc. Am. Math. Soc. 2 (1951), 747-749. DOI 10.1090/S0002-9939-1951-0043808-6 | MR 0043808 | Zbl 0044.28403
[8] Warnaar, S. O.: $q$-hypergeometric proofs of polynomial analogues of the triple product identity, Lebesgue's identity and Euler's pentagonal number theorem. Ramanujan J. 8 (2004), 467-474. DOI 10.1007/s11139-005-0275-0 | MR 2130521 | Zbl 1066.05023
Partner of
EuDML logo