Title:
|
Extending generalized Whitney maps (English) |
Author:
|
Lončar, Ivan |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
65-76 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
For metrizable continua, there exists the well-known notion of a Whitney map. If $X$ is a nonempty, compact, and metric space, then any Whitney map for any closed subset of $2^{X}$ can be extended to a Whitney map for $2^{X}$ [3, 16.10 Theorem]. The main purpose of this paper is to prove some generalizations of this theorem. (English) |
Keyword:
|
extending generalized Whitney map |
Keyword:
|
hyperspace |
MSC:
|
54B20 |
MSC:
|
54F15 |
idZBL:
|
Zbl 06770052 |
idMR:
|
MR3672781 |
DOI:
|
10.5817/AM2017-2-65 |
. |
Date available:
|
2017-06-09T07:47:50Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146793 |
. |
Reference:
|
[1] Charatonik, J.J., Charatonik, W.J.: Whitney maps—a non-metric case.Colloq. Math. 83 (2) (2000), 305–307. Zbl 0953.54013, MR 1758323 |
Reference:
|
[2] Engelking, R.: General Topology.PWN Warszawa, 1977. Zbl 0373.54002, MR 0500780 |
Reference:
|
[3] Illanes, A., Nadler, Jr., S.B.: Hyperspaces: Fundamentals and Recent advances.Marcel Dekker, New York-Basel, 1999. Zbl 0933.54009, MR 1670250 |
Reference:
|
[4] Jones, F.B.: Aposyndetic continua and certain boundary problems.Amer. J. Math. 63 (1941), 545–553. Zbl 0025.24003, MR 0004771, 10.2307/2371367 |
Reference:
|
[5] Kelley, J.L.: Hyperspaces of a continuum.Trans. Amer. Math. Soc. 52 (1942), 22–36. Zbl 0061.40107, MR 0006505, 10.1090/S0002-9947-1942-0006505-8 |
Reference:
|
[6] Lončar, I.: Non-metric rim-metrizable continua and unique hyperspace.Publ. Inst. Math. (Beograd) (N.S.) 73 (87) (2003), 97–113. Zbl 1054.54026, MR 2068242, 10.2298/PIM0373097L |
Reference:
|
[7] Michael, E.: Topologies on spaces of subsets.Trans. Amer. Math. Soc. 71 (1951), 152–182. Zbl 0043.37902, MR 0042109, 10.1090/S0002-9947-1951-0042109-4 |
Reference:
|
[8] Nadler, S.B.: Hyperspaces of sets.Marcel Dekker, Inc., New York, 1978. Zbl 0432.54007, MR 0500811 |
Reference:
|
[9] Nadler, S.B.: Continuum theory.Marcel Dekker, Inc., New York, 1992. Zbl 0757.54009, MR 1192552 |
Reference:
|
[10] Smith, M., Stone, J.: On non-metric continua that support Whitney maps.Topology Appl. 170 (2014), 63–85. Zbl 1296.54037, MR 3200390, 10.1016/j.topol.2014.02.007 |
Reference:
|
[11] Stone, J.: Non-metric continua that support Whitney maps.Dissertation. Zbl 1296.54037 |
Reference:
|
[12] Ward, L.E.: Extending Whitney maps.Pacific J. Math. 93 (1981), 465–470. Zbl 0457.54008, MR 0623577, 10.2140/pjm.1981.93.465 |
Reference:
|
[13] Whitney, H.: Regular families of curves, I.Proc. Nat. Acad. Sci. 18 (1932), 275–278. Zbl 0004.07503, 10.1073/pnas.18.3.275 |
Reference:
|
[14] Whitney, H.: Regular families of curves.Ann. of Math. (2) 34 (1933), 244–270. Zbl 0006.37101, MR 1503106, 10.2307/1968202 |
Reference:
|
[15] Wilder, B.E.: Between aposyndetic and indecomposable continua.Topology Proc. 17 (1992), 325–331. Zbl 0788.54041, MR 1255815 |
. |