Title:
|
Characterizations of $z$-Lindelöf spaces (English) |
Author:
|
Al-Omari, Ahmad |
Author:
|
Noiri, Takashi |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
93-99 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A topological space $(X, \tau )$ is said to be $z$-Lindelöf [1] if every cover of $X$ by cozero sets of $(X,\tau )$ admits a countable subcover. In this paper, we obtain new characterizations and preservation theorems of $z$-Lindelöf spaces. (English) |
Keyword:
|
cozero set |
Keyword:
|
$\omega $-open set |
Keyword:
|
Lindelöf |
Keyword:
|
$z$-Lindelöf |
MSC:
|
54C05 |
MSC:
|
54C08 |
MSC:
|
54C10 |
idZBL:
|
Zbl 06770054 |
idMR:
|
MR3672783 |
DOI:
|
10.5817/AM2017-2-93 |
. |
Date available:
|
2017-06-09T07:50:08Z |
Last updated:
|
2020-01-05 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146796 |
. |
Reference:
|
[1] Al-Ani, A.T.: $z$-compact spaces.Journal of University of Anbar for Pure Science 3 (1) (2009), 118–121. |
Reference:
|
[2] Al-Omari, A.: On ideal topological spaces via cozero sets.Questions Answers Gen. Topology 34 (2) (2016), 83–91. Zbl 1365.54002, MR 3587343 |
Reference:
|
[3] Al-Omari, A.: Some operators in ideal topological spaces via cozero sets.Acta Univ. Apulensis 36 (4) (2016), 1–12. MR 3596204 |
Reference:
|
[4] Al-Omari, A., Noiri, T.: On quasi compact spaces and some functions.accepted in Bol. Soc. Paran. Mat. 36 (4) (2018), 121–130. 10.5269/bspm.v36i4.31125 |
Reference:
|
[5] Bayhan, S., Kanibir, A., McCluskey, A., Reilly, I.L.: On almost $z$-supercontinuity.Filomat 27 (6) (2013), 965–969. Zbl 1324.54021, MR 3244240, 10.2298/FIL1306965B |
Reference:
|
[6] Gillman, L., Jerison, M.: Rings of Continuous Functions.Van Nostrand Co., Inc., Princeton, N. J., 1960. Zbl 0093.30001, MR 0116199 |
Reference:
|
[7] Hdeib, H.Z.: $\omega $-closed mappings.Rev. Colombiana Mat. 16 (1–2) (1982), 65–78. Zbl 0574.54008, MR 0677814 |
Reference:
|
[8] Kohli, J.K., Singh, D., Kumar, R.: Generalizations of $Z$-supercontinuous functions and $D_{\delta }$-supercontinuous functions.Appl. Gen. Topology 9 (2) (2008), 239–251. Zbl 1181.54020, MR 2560172, 10.4995/agt.2008.1804 |
Reference:
|
[9] Singal, M.K., Niemse, S.B.: $z$-continuous mappings.Math. Student 66 (1997), 193–210. MR 1626266 |
. |