Previous |  Up |  Next

Article

Title: Existence results for a class of high order differential equation associated with integral boundary conditions at resonance (English)
Author: Nhan, Le Cong
Author: Hoang, Do Huy
Author: Truong, Le Xuan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 111-130
Summary lang: English
.
Category: math
.
Summary: By using Mawhin’s continuation theorem, we provide some sufficient conditions for the existence of solution for a class of high order differential equations of the form $$x^{(n)} =f(t,x,x^{\prime },\dots ,x^{(n-1)})\,, \quad t \in [0, 1]\,,$$ associated with the integral boundary conditions at resonance. The interesting point is that we shall deal with the case of nontrivial kernel of arbitrary dimension corresponding to high order differential operator which will cause some difficulties in constructing the generalized inverse operator. (English)
Keyword: coincidence degree
Keyword: high order differential equation
Keyword: resonance
MSC: 34B10
MSC: 34B15
idZBL: Zbl 06770056
idMR: MR3672785
DOI: 10.5817/AM2017-2-111
.
Date available: 2017-06-09T07:52:55Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146798
.
Reference: [1] Du, Z., Lin, X., Ge, W.: Some higher-order multi-point boundary value problem at resonance.J. Comput. Appl. Math. 177 (2005), 55–65. Zbl 1059.34010, MR 2118659, 10.1016/j.cam.2004.08.003
Reference: [2] Feng, W., Webb, J.R.L.: Solvability of m-point boundary value problems with nonlinear growth.J. Math. Anal. Appl. 212 (1997), 467–480. Zbl 0883.34020, MR 1464891, 10.1006/jmaa.1997.5520
Reference: [3] Feng, W., Webb, J.R.L.: Solvability of three-point boundary value problems at resonance.Nonlinear Anal. 30 (6) (1997), 3227–3238. Zbl 0891.34019, MR 1603039, 10.1016/S0362-546X(96)00118-6
Reference: [4] Franco, D., Infante, G., Zima, M.: Second order nonlocal boundary value problems at resonance.Math. Nachr. 284 (2011), 875–884. Zbl 1273.34029, MR 2815958, 10.1002/mana.200810841
Reference: [5] Gaines, R.E., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations.Lecture Notes in Math., vol. 568, Springer Verlag Berlin, 1977. Zbl 0339.47031, MR 0637067, 10.1007/BFb0089537
Reference: [6] Gao, Y., Pei, M.: Solvability for two classes of higher-order multi-point boundary value problems at resonance.Boundary Value Problems (2008), Art. ID 723828, 14 pp. Zbl 1149.34008, MR 2392915
Reference: [7] Gupta, C.P.: Existence theorems for a second order m-point boundary value problem at resonance.Internat. J. Math. Math. Sci. 18 (4) (1995), 705–710. Zbl 0839.34027, MR 1347059, 10.1155/S0161171295000901
Reference: [8] Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the first kind for a Sturm-Liouville operator.J. Differential Equations 23 (1987), 803–810. MR 0903975
Reference: [9] Il’in, V.A., Moiseev, E.I.: Nonlocal boundary value problem of the second kind for a Sturm-Liouville operator.J. Differential Equations 23 (1987), 979–978. Zbl 0668.34024, MR 0909590
Reference: [10] Infante, G., Zima, M.: Positive solutions of multi-point boundary value problems at resonance.Nonlinear Anal. 69 (2008), 622–633. Zbl 1203.34041, MR 2446343, 10.1016/j.na.2007.08.024
Reference: [11] Kosmatov, N.: A multi-point boundary value problem with two critical conditions.Nonlinear Anal. 65 (2006), 622–633. Zbl 1121.34023, MR 2231078, 10.1016/j.na.2005.09.042
Reference: [12] Kosmatov, N.: A singular non-local problem at resonance.J. Math. Anal. Appl. 394 (2012), 425–431. Zbl 1260.34037, MR 2926233, 10.1016/j.jmaa.2012.04.069
Reference: [13] Lin, X., Du, Z., Ge, W.: Solvability of multipoint boundary value problems at resonance for higher-order ordinary differential equations.Comput. Math. Appl. 49 (2005), 1–11. Zbl 1081.34017, MR 2123180, 10.1016/j.camwa.2005.01.001
Reference: [14] Lu, S., Ge, W.: On the existence of m-point boundary value problem at resonance for higher order differential equation.J. Math. Anal. Appl. 287 (2003), 522–539. Zbl 1046.34029, MR 2024338, 10.1016/S0022-247X(03)00567-5
Reference: [15] Ma, R.: Existence results of a m-point boundary value problem at resonance.J. Math. Anal. Appl. 294 (2004), 147–157. Zbl 1070.34028, MR 2059796, 10.1016/j.jmaa.2004.02.005
Reference: [16] Mawhin, J.: Topological degree methods in nonlinear boundary value problems.Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9–15, 1977. CBMS Regional Conference Series in Mathematics, 40, American Mathematical Society, Providence, R.I., 1979. Zbl 0414.34025, MR 0525202
Reference: [17] Mawhin, J.: Functional analysis and nonlinear boundary value problems: the legacy of Andrzej Lasota.Ann. Math. Sil. 27 (2013), 7–38. Zbl 1326.34013, MR 3157115
Reference: [18] O’Regan, D.: Boundary value problems for second and higher order differential equations.Proc. Amer. Math. Soc. 113 (1991), 761–775. Zbl 0742.34023, MR 1069295, 10.1090/S0002-9939-1991-1069295-2
Reference: [19] Przeradzki, B.: Three methods for the study of semilinear equations at resonance.Colloq. Math. (1993), 110–129. Zbl 0828.47054, MR 1242650
Reference: [20] Wong, F.H.: An application of Schander’s fixed point theorem with respect to higher order BVPs.Proc. Amer. Math. Soc. 126 (1998), 2389–2397. MR 1476399, 10.1090/S0002-9939-98-04709-1
Reference: [21] Zhang, X., Feng, M., Ge, W.: Existence result of second-order differential equations with integral boundary conditions at resonance.J. Math. Anal. Appl. 353 (2009), 311–319. Zbl 1180.34016, MR 2508869, 10.1016/j.jmaa.2008.11.082
.

Files

Files Size Format View
ArchMathRetro_053-2017-2_5.pdf 576.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo