Previous |  Up |  Next

Article

Title: New criterion for asymptotic stability of time-varying dynamical systems (English)
Author: Ghrissi, Taoufik
Author: Hammami, Mohamed Ali
Author: Hammi, Mekki
Author: Mabrouk, Mohamed
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 331-353
Summary lang: English
.
Category: math
.
Summary: In this paper, we establish some new sufficient conditions for uniform global asymptotic stability for certain classes of nonlinear systems. Lyapunov approach is applied to study exponential stability and stabilization of time-varying systems. Sufficient conditions are obtained based on new nonlinear differential inequalities. Moreover, some examples are treated and an application to control systems is given. (English)
Keyword: nonlinear time-varying systems
Keyword: asymptotic stability
Keyword: stabilization
MSC: 93Cxx
MSC: 93Dxx
idZBL: Zbl 06770171
idMR: MR3661355
DOI: 10.14736/kyb-2017-2-0331
.
Date available: 2017-06-25T18:02:32Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146808
.
Reference: [1] Aeyels, O., Penteman, P.: A new asymptotic stability cretirion for non linear time varying differential equations..IEEE Trans. Automat. Control 43 (1998), 968-971. MR 1633504, 10.1109/9.701102
Reference: [2] Bay, N. S., Phat, V. N.: Stability of nonlinear difference time varying systems with delays..Vietnam J. Math. 4 (1999), 129-136.
Reference: [3] BenAbdallah, A., Ellouze, I., Hammami, M. A.: Practical stability of nonlinear time-varying cascade systems..J. Dynamical Control Systems 15 (2009), 1, 45-62. Zbl 1203.93160, MR 2475660, 10.1007/s10883-008-9057-5
Reference: [4] Corless, M: Guaranteed rates of exponential convergence for uncertain systems..J. Optim. Theory Appl. 64 (1990), 3, 481-494. MR 1043736, 10.1007/bf00939420
Reference: [5] Corless, M., Leitmann, G.: Controller design for uncertain systems via Lyapunov functions..In: Proc. 1988 American Control Conference, Atlanta 1988.
Reference: [6] Garofalo, F., Leitmann, G.: Guaranteeing ultimate boundedness and exponential rate of convergence for a class of nominally linear uncertain systems..J. Dynamic Systems, Measurement, and Control 111 (1989), 584-588. Zbl 0714.93013, 10.1115/1.3153097
Reference: [7] Hahn, W.: Stability of Motion..Springer, New York 1967. Zbl 0189.38503, MR 0223668, 10.1007/978-3-642-50085-5
Reference: [8] A.Hammami, M.: On the stability of nonlinear control systems with uncertainty..J. Dynamical Control Systems 7 (2001), 2, 171-179. MR 1830490, 10.1023/a:1013099004015
Reference: [9] Hammi, M., Hammami, M. A.: Non-linear integral inequalities and applications to asymptotic stability..IMA J. Math. Control Inform. 32 (2015), 4, 717-736. Zbl 1328.93214, MR 3436122, 10.1093/imamci/dnu016
Reference: [10] Hammi, M., A.Hammami, M.: Gronwall-Bellman type integral inequalities and applications to global uniform asymptotic stability..CUBO Math. J. 17 (2015), 3, 53-70. MR 3445845, 10.4067/s0719-06462015000300004
Reference: [11] Khalil, H.: Nonlinear Systems..Prentice Hall 2002. Zbl 1194.93083
Reference: [12] Lakshmikantham, V., Leela, S., Martynuk, A. A.: Practical Stability of Nonlinear Systems..World Scientific Publishing Co. Pte. Ltd. 1990. MR 1089428, 10.1142/1192
Reference: [13] Lü, J., Chen, G.: A time-varying complex dynamical network model and its controlled synchronization criteria..IEEE Trans. Automat. Control. 50 (2005), 6, 841-846. MR 2142000, 10.1109/tac.2005.849233
Reference: [14] Liu, K., Zhu, H., Lü, J.: Bridging the gap between transmission noise and sampled data for robust consensus of multi-agent systems..IEEE Trans. Circuits and Systems I 62 (2015), 7, 1836-1844. MR 3361623, 10.1109/tcsi.2015.2434101
Reference: [15] Liu, K., Wu, L., Lü, J., Zhu, H.: Finite-time adaptive consensus of a class of multi-agent systems..Science China Technol. Sci. 59 (2016), 1, 22-32. 10.1007/s11431-015-5989-7
Reference: [16] Li, Y., Wu, X., Lu, J., Lü, J.: Synchronizability of duplex networks..IEEE Trans. Circuits and Systems II - Express Briefs 63 (2016), 2, 206-210. 10.1109/tcsii.2015.2468924
Reference: [17] Lin, W., Pongvuthithum, R.: Global satbilization of cascade system by ${C}^0$ partial-state feedback..IEEE Trans. Automat. Control 47 (2002), 1356-1362. MR 1917450, 10.1109/tac.2002.800743
Reference: [18] Pantely, E., Loria, A.: On global uniform asymptotic stability of nonlinear time-varying systems in cascade..System Control Lett. 33 (1998), 131-138. MR 1607815, 10.1016/s0167-6911(97)00119-9
Reference: [19] Pham, Q. C., Tabareau, N., Slotine, J. J. E.: A contraction theory appoach to stochastic incremental stability..IEEE Trans. Automat. Control 54 (2009), 4, 816-820. MR 2514815, 10.1109/tac.2008.2009619
Reference: [20] Phat, V. N.: Global stabilization for linear continuous time-varying systems..Appl. Math. Comput. 175 (2006), 1730-1743. Zbl 1131.93044, MR 2225620, 10.1016/j.amc.2005.09.017
Reference: [21] Martynyuk, A. A.: Stability in the models of real world phenomena..Nonlinear Dyn. Syst. Theory 11 (2011), 1, 7-52. Zbl 1283.70006, MR 2798814
Reference: [22] Mu, X., Cheng, D.: On stability and stabilization of time-varying nonlinear control systems..Asian J. Control 7 (2005), 3, 244-255. 10.1111/j.1934-6093.2005.tb00234.x
Reference: [23] Pata, V.: Uniform estimates of Gronwall types..J. Math. Anal. Appl. xx (2011), 264-270. MR 2684477, 10.1016/j.jmaa.2010.07.006
Reference: [24] Zubov, V. I.: Methods of A. M. Lyapunov and Their Applications..P. Noordhoff, Groningen, 1964. MR 0179428
.

Files

Files Size Format View
Kybernetika_53-2017-2_9.pdf 390.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo