Previous |  Up |  Next

Article

Title: Periodic parametric perturbation control for a 3D autonomous chaotic system and its dynamics at infinity (English)
Author: Wang, Zhen
Author: Sun, Wei
Author: Wei, Zhouchao
Author: Zhang, Shanwen
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 2
Year: 2017
Pages: 354-369
Summary lang: English
.
Category: math
.
Summary: Periodic parametric perturbation control and dynamics at infinity for a 3D autonomous quadratic chaotic system are studied in this paper. Using the Melnikov's method, the existence of homoclinic orbits, oscillating periodic orbits and rotating periodic orbits are discussed after transferring the 3D autonomous chaotic system to a slowly varying oscillator. Moreover, the parameter bifurcation conditions of these orbits are obtained. In order to study the global structure, the dynamics at infinity of this system are analyzed through Poincaré compactification. The simulation results demonstrate feasibility of periodic parametric perturbation control technology and correctness of the theoretical results. (English)
Keyword: Hamiltonian system
Keyword: Melnikov's methods
Keyword: homoclinic orbits
Keyword: periodic orbits
Keyword: periodic parametric perturbation
Keyword: dynamics at infinity
MSC: 34D20
MSC: 34H10
MSC: 34H20
idZBL: Zbl 06770172
idMR: MR3661356
DOI: 10.14736/kyb-2017-2-0354
.
Date available: 2017-06-25T18:04:05Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146809
.
Reference: [1] Chen, Y., Cao, L., Sun, M.: Robust midified function projective synchronization in network with unknown parameters and mismatch parameters..Int. J. Nonlinear Sci. 10 (2010), 17-23. MR 2721064
Reference: [2] Čelikovský, S., Vaněček, A.: Bilinear systems and chaos..Kybernetika 30 (1994), 403-424. Zbl 0823.93026, MR 1303292
Reference: [3] Dumortier, F., Llibre, J., Artes, J. C.: Qualitative Theory of Planar Differential Systems..Springer, Berlin 2006. Zbl 1110.34002, MR 2256001
Reference: [4] Fang, Y. Y., Xu, Z. Y., Cai, C. H.: Melnikov analysis of feedback control of chaotic dynamics system..J. Wuxi University of Light Industry 20 (2001), 624-629.
Reference: [5] Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields..Springer, Berlin 2002. Zbl 0515.34001, MR 0709768, 10.1007/978-1-4612-1140-2
Reference: [6] Jafari, S., Sprott, J. C.: Simple chaotic flows with a line equilibrium..Chaos, Solitons and Fractals 57 (2013), 79-84. Zbl 1355.37056, MR 3128600, 10.1016/j.chaos.2013.08.018
Reference: [7] Kuznetsov, A. P., Kuznetsov, S. P., Stankevich, N. V.: A simple autonomous quasiperiodic self-oscillator..Commun. Nonlinear Sci. Numer. Simul. 15 (2010), 1676-1681. 10.1016/j.cnsns.2009.06.027
Reference: [8] Li, J. B., Zhao, X. H., Liu, Z. R.: Theory of Generalized Hamiltonian System and its Applications..Science Press, Beijing 2007.
Reference: [9] Li, Y., Wu, X. Q., Lu, J. A., Lü, J. H.: Synchronizability of duplex networks..IEEE Trans. Circuits and Systems II 63 (2016), 206-210. 10.1109/tcsii.2015.2468924
Reference: [10] Liu, K. X., Wu, L. L., Lü, J. H., Zhu, H. H.: Finite-time adaptive consensus of a class of multi-agent systems..Science China-Technological Sciences 59 (2016), 22-32. 10.1007/s11431-015-5989-7
Reference: [11] Liu, Y. J.: Analysis of global dynamics in an unusual 3D chaotic system..Nonlinear Dyn. 70 (2012), 2203-2212. Zbl 1268.34092, MR 2992208, 10.1007/s11071-012-0610-0
Reference: [12] Liu, Z. R.: Perturbation Criteria for Chaos..Shanghai Scientific and Technological Education Publishing House, Shanghai 1994.
Reference: [13] Lorenz, E. N.: Deterministic non-periodic flow..J. Atmospheric Sci. 20 (1963), 130-141. 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2
Reference: [14] Lü, J. H., Chen, G. R.: A new chaotic attractor coined..Int. J. Bifurcation and Chaos 12 (2002), 659-661. Zbl 1063.34510, MR 1894886, 10.1142/s0218127402004620
Reference: [15] Mirus, K. A., Sprott, J. C.: Controlling chaos in a high dimensional systems with periodic parametric perturbations..Phys. Lett. A 254 (1999), 275-278. 10.1016/s0375-9601(99)00068-7
Reference: [16] Mirus, K. A., Sprott, J. C.: Controlling chaos in low- and high-dimensional systems with periodic parametric perturbations..Phys. Rev. E 59 (1999), 5313-5324. 10.1103/physreve.59.5313
Reference: [17] Shen, C. W., Yu, S. M., Chen, G. R.: Constructing hyperchaotic systems at will..Int. J. Circuit Theory Appl. 43 (2015), 2039-2056. 10.1002/cta.2062
Reference: [18] Sprott, J. C.: Some simple chaotic flows..Phys. Rev. E {\mi50} (1994), 647-650. MR 1381868, 10.1103/physreve.50.r647
Reference: [19] Tan, S. L., Lü, J. H., Hill, D. J.: Towards a theoretical framework for analysis and intervention of random drift on general networks..IEEE Trans. Automat. Control 60 (2015), 576-581. MR 3310190, 10.1109/tac.2014.2329235
Reference: [20] Tigan, G.: Analysis of a dynamical system derived from the Lorenz system..Scientific Bull. Politehnica University of Timisoara 50 (2005), 61-72. Zbl 1107.37039, MR 2278163
Reference: [21] Wang, Q. X., Yu, S. M., Li, C. Q., Lü, J. H., Fang, X. L., Bahi, J. M.: Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems..IEEE Trans. Circuits and Systems I 63 (2016), 401-412. MR 3488842, 10.1109/tcsi.2016.2515398
Reference: [22] Wang, X., Chen, G. R.: Constructing a chaotic system with any number of equilibria..Nonlinear Dynamics 71 (2013), 429-436. MR 3015249, 10.1007/s11071-012-0669-7
Reference: [23] Wang, Z.: Existence of attractor and control of a 3D differential system..Nonlinear Dynmics 60 (2010), 369-373. Zbl 1189.70103, MR 2645029, 10.1007/s11071-009-9601-1
Reference: [24] Wang, Z.: Passivity control of nonlinear electromechanical transducer chaotic system..Control Theory Appl. 28 (2011), 1036-1040.
Reference: [25] Wang, Z., Li, Y. X., Xi, X. J., Lü, L.: Heteoclinic orbit and backstepping control of a 3D chaotic system..Acta Phys. Sin. 60 (2011), 010513.
Reference: [26] Wang, Z., Sun, W., Wei, Z. C., Xi, X. J.: Dynamics analysis and robust modified function projective synchronization of Sprott E system with quadratic perturbation..Kybernetika 50 (2014), 616-631. Zbl 1310.34063, MR 3275088, 10.14736/kyb-2014-4-0616
Reference: [27] Wang, Z., Wei, Z. C., Xi, X. J., Li, Y. X.: Dynamics of a 3D autonomous quadratic system with an invariant algebraic surface..Nonlinear Dynamics 77 (2014), 1503-1518. Zbl 1331.34044, MR 3247491, 10.1007/s11071-014-1395-0
Reference: [28] Wei, Z. C., Yang, Q. G.: Controlling the diffusionless Lorenz equations with periodic parametric perturbation..Comput. Math. Appl. 58 (2009), 1979-1987. Zbl 1189.34118, MR 2557520, 10.1016/j.camwa.2009.07.058
Reference: [29] Wei, Z. C., Zhang, W., Wang, Z., Yao, M. H.: Hidden attractors and dynamical behaviors in an extended Rikitake system..Int. J. Bifurcation and Chaos 22 (2015), 1550028. Zbl 1309.34009, MR 3316322, 10.1142/s0218127415500285
Reference: [30] Wu, Z. M., Xie, J. Y., Fang, Y. Y., Xu, Z. Y.: Controlling chaos with periodic parametric perturbations in Lorenz system..Chaos Solitons and Fractals 32 (2007), 104-112. Zbl 1138.37314, MR 2271105, 10.1016/j.chaos.2005.10.060
Reference: [31] Wiggins, S., Holmes, P.: Homiclinic orbits in slowly varying oscillators..SIAM J. Math. Anal. 18 (1987), 612-629. MR 0883556, 10.1137/0518047
Reference: [32] Wiggins, S., Holmes, P.: Periodic orbits in slowly varying oscillators..SIAM J. Math. Anal. 18 (1987), 592-611. Zbl 0619.34041, MR 0883555, 10.1137/0518046
Reference: [33] Yang, Q. G., Chen, G. R.: A chaotic system with one saddle and two stable node-foci..Int. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl 1147.34306, MR 2427132, 10.1142/s0218127408021063
.

Files

Files Size Format View
Kybernetika_53-2017-2_10.pdf 2.327Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo