[1] Andreianov, B., Bendahmane, M., Ouaro, S.: 
Structural stability for variable exponent elliptic problems, I: The $p(x)$-Laplacian kind problems. Nonlinear Anal., 73, 2010, 2-24,  
DOI 10.1016/j.na.2010.02.039 | 
MR 2645827 | 
Zbl 1191.35126[2] Ansini, L., Giacomelli, L.: 
Shear-thinning liquid films: macroscopic and asymptotic behavior by quasi-self-similar solutions. Nonlinearity, 15, 2002, 2147-2164,  
DOI 10.1088/0951-7715/15/6/318 | 
MR 1938485[4] Antontsev, S.N., Shmarev, S.I.: 
A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60, 2005, 515-545,  
DOI 10.1016/j.na.2004.09.026 | 
MR 2103951 | 
Zbl 1066.35045[5] Antontsev, S., Shmarev, S.: 
Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions. Handbook of Differential Equations: Stationary Partial Differential Equations, 3, 2006, 1-100,  
Zbl 1192.35047[9] Bertsch, M., Giacomelli, L., Lorenzo, G., Karali, G.: 
Thin-film equations with Partial wetting energy: Existence of weak solutions. Physica D, 209, 2005, 17-27,  
DOI 10.1016/j.physd.2005.06.012 | 
MR 2167440 | 
Zbl 1079.76011[10] Bhuvaneswari, V., Shangerganesh, L., Balachandran, K.: 
 Weak solutions for $p$-Laplacian equation. Adv. Nonlinear Anal., 1, 2012, 319-334,  
MR 3037124 | 
Zbl 1277.35117[12] Cahn, J. W., Hilliard, J. E.: 
Free energy of nonuniform system I. interfacial free energy. J. Chem. Phys., 28, 1958, 258-367,  
DOI 10.1063/1.1744102[13] Calderon, C. P., Kwembe, T. A.: 
Dispersal models. Rev. Union Mat. Argentina, 37, 1991, 212-229,  
MR 1266684 | 
Zbl 0795.92029[14] Chang, K.: 
Critical Point Theory and Its Applications. 1986, Shangai Sci. Tech. Press, Shangai,  
MR 0865982 | 
Zbl 0698.58002[15] Chen, Y., Levine, S., Rao, M.: 
Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math., 66, 2006, 1383-1406,  
DOI 10.1137/050624522 | 
MR 2246061 | 
Zbl 1102.49010[16] Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: 
Lebesgue and Sobolev Spaces With Variable Exponents. 2011, Springer-Verlag, Heidelberg,  
MR 2790542 | 
Zbl 1222.46002[17] Evans, L. C.: 
Weak Convergence Methods for Nonlinear Partial Differential Equations. 1990, American Mathematical Society, Providence, RI,  
MR 1034481 | 
Zbl 0698.35004[18] Gao, W., Guo, Z.: 
Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity. Ann. Mat. Pura Appl., 191, 2012, 551-562,  
MR 2958349 | 
Zbl 1272.35135[19] Guo, Z., Liu, Q., Sun, J., Wu, B.: 
Reaction-diffusion systems with $p(x)$-growth for image denoising. Nonlinear Anal. RWA, 12, 2011, 2904-2918,  
MR 2813233 | 
Zbl 1219.35340[21] Lions, J.: Quelques Methodes de Resolution des Problems aux Limites Non lineaire. 1969, Dunod Editeur Gauthier Villars, Paris, 
[22] Liu, C.: 
Some properties of solutions for the generalized thin film equation in one space dimension. Boletin de la Asociacion Matematica venezolana, 12, 2005, 43-52,  
MR 2192402 | 
Zbl 1099.35115[24] Ruzicka, M.: 
Electrorheological Fluids: Modeling and Mathematical Theory. 1748, 2000, Springer-Verlag, Berlin,  
MR 1810360 | 
Zbl 0968.76531[28] Zhang, C., Zhou, S.: 
A fourth-order degenerate parabolic equation with variable exponent. J. Part. Diff. Eq., 2009, 1-16,  
MR 2589555 | 
Zbl 1212.35259