Previous |  Up |  Next

Article

Title: Weak Solutions for Nonlinear Parabolic Equations with Variable Exponents (English)
Author: Shangerganesh, Lingeshwaran
Author: Gurusamy, Arumugam
Author: Balachandran, Krishnan
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 1
Year: 2017
Pages: 55-70
Summary lang: English
.
Category: math
.
Summary: In this work, we study the existence and uniqueness of weak solutions of fourth-order degenerate parabolic equation with variable exponent using the difference and variation methods. (English)
Keyword: $p(x)$-Laplacian
Keyword: Weak solution
Keyword: Variable exponents.
MSC: 35K55
MSC: 35K65
idZBL: Zbl 1391.35208
idMR: MR3667076
.
Date available: 2017-09-01T12:17:47Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146844
.
Reference: [1] Andreianov, B., Bendahmane, M., Ouaro, S.: Structural stability for variable exponent elliptic problems, I: The $p(x)$-Laplacian kind problems.Nonlinear Anal., 73, 2010, 2-24, Zbl 1191.35126, MR 2645827, 10.1016/j.na.2010.02.039
Reference: [2] Ansini, L., Giacomelli, L.: Shear-thinning liquid films: macroscopic and asymptotic behavior by quasi-self-similar solutions.Nonlinearity, 15, 2002, 2147-2164, MR 1938485, 10.1088/0951-7715/15/6/318
Reference: [3] Ansini, L., Giacomelli, L.: Doubly nonlinear thin-film equations in one space dimension.Arch. Ration. Mech. Anal., 173, 2004, 89-131, Zbl 1064.76012, MR 2073506, 10.1007/s00205-004-0313-x
Reference: [4] Antontsev, S.N., Shmarev, S.I.: A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions.Nonlinear Anal., 60, 2005, 515-545, Zbl 1066.35045, MR 2103951, 10.1016/j.na.2004.09.026
Reference: [5] Antontsev, S., Shmarev, S.: Elliptic equations with anisotropic nonlinearity and nonstandard growth conditions.Handbook of Differential Equations: Stationary Partial Differential Equations, 3, 2006, 1-100, Zbl 1192.35047
Reference: [6] Antontsev, S., Shmarev, S.: Parabolic equations with anisotropic nonstandard growth conditions.Internat. Ser. Numer. Math., 154, 2006, 33-44, MR 2305342, 10.1007/978-3-7643-7719-9_4
Reference: [7] Antontsev, S., Shmarev, S.: Blow-up of solutions to parabolic equations with nonstandard growth conditions.J. Comput. Appl. Math., 234, 2010, 2633-2645, Zbl 1196.35057, MR 2652114, 10.1016/j.cam.2010.01.026
Reference: [8] Antontsev, S., Shmarev, S.: Vanishing solutions of anisotropic parabolic equations with variable nonlinearity.J. Math. Anal. Appl., 361, 2010, 371-391, Zbl 1183.35177, MR 2568702, 10.1016/j.jmaa.2009.07.019
Reference: [9] Bertsch, M., Giacomelli, L., Lorenzo, G., Karali, G.: Thin-film equations with Partial wetting energy: Existence of weak solutions.Physica D, 209, 2005, 17-27, Zbl 1079.76011, MR 2167440, 10.1016/j.physd.2005.06.012
Reference: [10] Bhuvaneswari, V., Shangerganesh, L., Balachandran, K.: Weak solutions for $p$-Laplacian equation.Adv. Nonlinear Anal., 1, 2012, 319-334, Zbl 1277.35117, MR 3037124
Reference: [11] Bowen, M., Hulshof, J., King, J. R.: Anomalous exponents and dipole solutions for the thin film equation.SIAM J. Appl. Math., 62, 2001, 149-179, Zbl 1001.35074, MR 1857540, 10.1137/S0036139900366936
Reference: [12] Cahn, J. W., Hilliard, J. E.: Free energy of nonuniform system I. interfacial free energy.J. Chem. Phys., 28, 1958, 258-367, 10.1063/1.1744102
Reference: [13] Calderon, C. P., Kwembe, T. A.: Dispersal models.Rev. Union Mat. Argentina, 37, 1991, 212-229, Zbl 0795.92029, MR 1266684
Reference: [14] Chang, K.: Critical Point Theory and Its Applications.1986, Shangai Sci. Tech. Press, Shangai, Zbl 0698.58002, MR 0865982
Reference: [15] Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration.SIAM J. Appl. Math., 66, 2006, 1383-1406, Zbl 1102.49010, MR 2246061, 10.1137/050624522
Reference: [16] Diening, L., Harjulehto, P., Hasto, P., Ruzicka, M.: Lebesgue and Sobolev Spaces With Variable Exponents.2011, Springer-Verlag, Heidelberg, Zbl 1222.46002, MR 2790542
Reference: [17] Evans, L. C.: Weak Convergence Methods for Nonlinear Partial Differential Equations.1990, American Mathematical Society, Providence, RI, Zbl 0698.35004, MR 1034481
Reference: [18] Gao, W., Guo, Z.: Existence and localization of weak solutions of nonlinear parabolic equations with variable exponent of nonlinearity.Ann. Mat. Pura Appl., 191, 2012, 551-562, Zbl 1272.35135, MR 2958349
Reference: [19] Guo, Z., Liu, Q., Sun, J., Wu, B.: Reaction-diffusion systems with $p(x)$-growth for image denoising.Nonlinear Anal. RWA, 12, 2011, 2904-2918, Zbl 1219.35340, MR 2813233
Reference: [20] King, J. R.: Two generalization of the thin film equation.Math. Comput. Modeling, 34, 2001, 737-756, MR 1858796, 10.1016/S0895-7177(01)00095-4
Reference: [21] Lions, J.: Quelques Methodes de Resolution des Problems aux Limites Non lineaire.1969, Dunod Editeur Gauthier Villars, Paris,
Reference: [22] Liu, C.: Some properties of solutions for the generalized thin film equation in one space dimension.Boletin de la Asociacion Matematica venezolana, 12, 2005, 43-52, Zbl 1099.35115, MR 2192402
Reference: [23] Liu, C., Yin, J., Gao, H.: On the generalized thin film equation.Chin. Ann. Math., 25, 2004, 347-358, MR 2086127, 10.1142/S0252959904000329
Reference: [24] Ruzicka, M.: Electrorheological Fluids: Modeling and Mathematical Theory.1748, 2000, Springer-Verlag, Berlin, Zbl 0968.76531, MR 1810360
Reference: [25] Xu, M., Zhou, S.: Existence and uniqueness of weak solutions for a generalized thin film equation.Nonlinear Anal., 60, 2005, 755-774, Zbl 1073.35102, MR 2109157, 10.1016/j.na.2004.01.013
Reference: [26] Xu, M., Zhou, S.: Stability and regularity of weak solutions for a generalized thin film equation.J. Math. Anal. Appl., 337, 2008, 49-60, Zbl 1124.35025, MR 2356053, 10.1016/j.jmaa.2007.03.075
Reference: [27] Zang, A., Fu, Y.: Interpolation inequalities for derivatives in variable exponent Lebesgue-Sobolev spaces.Nonlinear Anal., 69, 2008, 3629-3636, Zbl 1153.26312, MR 2450565, 10.1016/j.na.2007.10.001
Reference: [28] Zhang, C., Zhou, S.: A fourth-order degenerate parabolic equation with variable exponent.J. Part. Diff. Eq., 2009, 1-16, Zbl 1212.35259, MR 2589555
Reference: [29] Zhang, C., Zhou, S.: Renormalized and entropy solutions for nonlinear parabolic equations with variable exponents and $L^1$ data.J. Differential Equations, 248, 2010, 1376-1400, Zbl 1195.35097, MR 2593046, 10.1016/j.jde.2009.11.024
Reference: [30] Zhou, S.: A priori $L^{\infty}$-estimate and existence of weak solutions for some nonlinear parabolic equations.Nonlinear Anal., 42, 2000, 887-904, MR 1776929, 10.1016/S0362-546X(99)00135-2
.

Files

Files Size Format View
ActaOstrav_25-2017-1_6.pdf 435.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo