Title:
|
The graphs of join-semilattices and the shape of congruence lattices of particle lattices (English) |
Author:
|
Růžička, Pavel |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
275-291 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We attach to each $\langle 0,\vee \rangle$-semilattice $\boldsymbol S$ a graph $\boldsymbol G_{\boldsymbol S}$ whose vertices are join-irreducible elements of $\boldsymbol S$ and whose edges correspond to the reflexive dependency relation. We study properties of the graph $\boldsymbol G_{\boldsymbol S}$ both when $\boldsymbol S$ is a join-semilattice and when it is a lattice. We call a $\langle 0,\vee \rangle$-semilattice $\boldsymbol S$ particle provided that the set of its join-irreducible elements satisfies DCC and join-generates $\boldsymbol S$. We prove that the congruence lattice of a particle lattice is anti-isomorphic to the lattice of all hereditary subsets of the corresponding graph that are closed in a certain zero-dimensional topology. Thus we extend the result known for principally chain finite lattices. (English) |
Keyword:
|
join-semilattice |
Keyword:
|
lattice |
Keyword:
|
join-irreducible |
Keyword:
|
dependency |
Keyword:
|
chain condition |
Keyword:
|
particle |
Keyword:
|
atomistic |
Keyword:
|
congruence |
MSC:
|
06A12 |
MSC:
|
06A15 |
MSC:
|
06B10 |
MSC:
|
06F30 |
idZBL:
|
Zbl 06837065 |
idMR:
|
MR3708773 |
DOI:
|
10.14712/1213-7243.2015.214 |
. |
Date available:
|
2017-11-22T09:18:26Z |
Last updated:
|
2019-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146911 |
. |
Reference:
|
[1] Day A.: Characterizations of finite lattices that are bounded-homomorphic images or sublattices of free lattices.Canad. J. Math. 31 (1979), 69–78. Zbl 0432.06007, MR 0518707, 10.4153/CJM-1979-008-x |
Reference:
|
[2] Engelking R.: General Topology.Heldermann, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[3] Freese R., Ježek J., Nation J.B.: Free Lattices.Mathematical Surveys and Monographs, 42, American Mathematical Society, Providence, Rhode Island, 1995. Zbl 0839.06005, MR 1319815, 10.1090/surv/042 |
Reference:
|
[4] Grätzer G.: General Lattice Theory.second edition, Birkhäuser, Basel, 1998. MR 1670580 |
Reference:
|
[5] Grätzer G., Schmidt E.T.: On congruence lattices of lattices.Acta Math. Acad. Sci. Hungar. 13 (1962), 179–185. Zbl 0101.02103, MR 0139551, 10.1007/BF02033636 |
Reference:
|
[6] König D.: Über eine Schlussweise aus dem Endlichen ins Unendliche.Acta Sci. Math. (Szeged) 3 (1927), 121–130. |
Reference:
|
[7] Nation J.B.: Notes on lattice theory.available online. |
Reference:
|
[8] Pudlák P., Tůma J.: Yeast graphs and fermentation of lattices.Lattice Theory (Proc. Colloq., Szeged, 1974), Colloq. Math. Soc. János Bolyai, vol. 14, North-Holland, Amsterdam, 1976, pp. 301–341. MR 0441799 |
Reference:
|
[9] Rhodes J.B.: Modular and distributive semilattices.Trans. Amer. Math. Soc. 201 (1975), 31–41. Zbl 0326.06006, MR 0351935, 10.1090/S0002-9947-1975-0351935-X |
Reference:
|
[10] Tischendorf M.: The representation problem for algebraic distributive lattices.Ph.D. Thesis, TH Darmstadt, 1992. |
Reference:
|
[11] Wehrung F.: Representation of algebraic distributive lattices vith $\aleph _1$ compact elements as ideal lattices of regular rings.Publ. Mat. (Barcelona) 44 (2000), 419–435. MR 1800815, 10.5565/PUBLMAT_44200_03 |
. |