Previous |  Up |  Next

Article

Title: On graph associated to co-ideals of commutative semirings (English)
Author: Talebi, Yahya
Author: Darzi, Atefeh
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 293-305
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph $\Omega(R)$ whose vertices are all elements of $R$ and two distinct vertices $x$ and $y$ are adjacent if and only if the product of the co-ideals generated by $x$ and $y$ is $R$. Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph $\Gamma(R)$ and $\Omega(R)$. (English)
Keyword: semiring
Keyword: co-ideal
Keyword: maximal co-ideal
MSC: 05C75
MSC: 16Y60
idZBL: Zbl 06837066
idMR: MR3708774
DOI: 10.14712/1213-7243.2015.219
.
Date available: 2017-11-22T09:19:19Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146913
.
Reference: [1] Akbari S., Habibi M., Majidinya A., Manaviyat R.: A note on co-maximal graph of non-commutative rings.Algebr. Represent. Theory 16 (2013), 303–307. MR 3035995, 10.1007/s10468-011-9309-z
Reference: [2] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), 434–447. Zbl 1035.13004, MR 1700509, 10.1006/jabr.1998.7840
Reference: [3] Beck I.: Coloring of commutative rings.J. Algebra 116 (1988), 208–226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5
Reference: [4] Chaudhari J.N., Ingale K.J.: Prime avoidance theorem for co-ideals in semirings.Research J. Pure Algebra 1(9) (2011), 213–216. MR 3020971
Reference: [5] Ebrahimi Atani S.: The zero-divisor graph with respect to ideals of a commutative semiring.Glas. Mat. 43(63) (2008), 309-320. Zbl 1162.16031, MR 2460702, 10.3336/gm.43.2.06
Reference: [6] Ebrahimi Atani S.: An ideal-based zero-divisor graph of a commutative semiring.Glas. Mat. 44(64) (2009), 141–153. Zbl 1181.16041, MR 2525659, 10.3336/gm.44.1.07
Reference: [7] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M.: Strong co-ideal theory in quotients of semirings.J. Adv. Res. Pure Math. 5 (2013), no. 3, 19–32. MR 3041341
Reference: [8] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M.: A fundamental theorem of co-homomorphisms for semirings.Thai J. Math. 12 (2014), no. 2, 491–497. Zbl 1310.16034, MR 3217354
Reference: [9] Golan J.S.: Semirings and Their Applications.Kluwer Academic Publishers, Dordrecht, 1999. Zbl 0947.16034, MR 1746739
Reference: [10] Maimani H.R., Salimi M., Sattari A., Yassemi S.: Comaximal graph of commutative rings.J. Algebra 319 (2008), 1801–1808. Zbl 1141.13008, MR 2383067, 10.1016/j.jalgebra.2007.02.003
Reference: [11] Sharma P.K., Bhatwadekar S.M.: A note on graphical representation of rings.J. Algebra 176 (1995), 124–127. Zbl 0838.05051, MR 1345297, 10.1006/jabr.1995.1236
Reference: [12] West D.B.: Introduction to Graph Theory.Prentice-Hall of India Pvt. Ltd, 2003. Zbl 1121.05304, MR 1367739
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_3.pdf 286.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo