Title:
|
On graph associated to co-ideals of commutative semirings (English) |
Author:
|
Talebi, Yahya |
Author:
|
Darzi, Atefeh |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
293-305 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be a commutative semiring with non-zero identity. In this paper, we introduce and study the graph $\Omega(R)$ whose vertices are all elements of $R$ and two distinct vertices $x$ and $y$ are adjacent if and only if the product of the co-ideals generated by $x$ and $y$ is $R$. Also, we study the interplay between the graph-theoretic properties of this graph and some algebraic properties of semirings. Finally, we present some relationships between the zero-divisor graph $\Gamma(R)$ and $\Omega(R)$. (English) |
Keyword:
|
semiring |
Keyword:
|
co-ideal |
Keyword:
|
maximal co-ideal |
MSC:
|
05C75 |
MSC:
|
16Y60 |
idZBL:
|
Zbl 06837066 |
idMR:
|
MR3708774 |
DOI:
|
10.14712/1213-7243.2015.219 |
. |
Date available:
|
2017-11-22T09:19:19Z |
Last updated:
|
2019-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146913 |
. |
Reference:
|
[1] Akbari S., Habibi M., Majidinya A., Manaviyat R.: A note on co-maximal graph of non-commutative rings.Algebr. Represent. Theory 16 (2013), 303–307. MR 3035995, 10.1007/s10468-011-9309-z |
Reference:
|
[2] Anderson D.F., Livingston P.S.: The zero-divisor graph of a commutative ring.J. Algebra 217 (1999), 434–447. Zbl 1035.13004, MR 1700509, 10.1006/jabr.1998.7840 |
Reference:
|
[3] Beck I.: Coloring of commutative rings.J. Algebra 116 (1988), 208–226. Zbl 0654.13001, MR 0944156, 10.1016/0021-8693(88)90202-5 |
Reference:
|
[4] Chaudhari J.N., Ingale K.J.: Prime avoidance theorem for co-ideals in semirings.Research J. Pure Algebra 1(9) (2011), 213–216. MR 3020971 |
Reference:
|
[5] Ebrahimi Atani S.: The zero-divisor graph with respect to ideals of a commutative semiring.Glas. Mat. 43(63) (2008), 309-320. Zbl 1162.16031, MR 2460702, 10.3336/gm.43.2.06 |
Reference:
|
[6] Ebrahimi Atani S.: An ideal-based zero-divisor graph of a commutative semiring.Glas. Mat. 44(64) (2009), 141–153. Zbl 1181.16041, MR 2525659, 10.3336/gm.44.1.07 |
Reference:
|
[7] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M.: Strong co-ideal theory in quotients of semirings.J. Adv. Res. Pure Math. 5 (2013), no. 3, 19–32. MR 3041341 |
Reference:
|
[8] Ebrahimi Atani S., Dolati Pish Hesari S., Khoramdel M.: A fundamental theorem of co-homomorphisms for semirings.Thai J. Math. 12 (2014), no. 2, 491–497. Zbl 1310.16034, MR 3217354 |
Reference:
|
[9] Golan J.S.: Semirings and Their Applications.Kluwer Academic Publishers, Dordrecht, 1999. Zbl 0947.16034, MR 1746739 |
Reference:
|
[10] Maimani H.R., Salimi M., Sattari A., Yassemi S.: Comaximal graph of commutative rings.J. Algebra 319 (2008), 1801–1808. Zbl 1141.13008, MR 2383067, 10.1016/j.jalgebra.2007.02.003 |
Reference:
|
[11] Sharma P.K., Bhatwadekar S.M.: A note on graphical representation of rings.J. Algebra 176 (1995), 124–127. Zbl 0838.05051, MR 1345297, 10.1006/jabr.1995.1236 |
Reference:
|
[12] West D.B.: Introduction to Graph Theory.Prentice-Hall of India Pvt. Ltd, 2003. Zbl 1121.05304, MR 1367739 |
. |