Previous |  Up |  Next

Article

Title: Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation (English)
Author: Zu, Li
Author: Jiang, Daqing
Author: O'Regan, Donal
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 867-890
Summary lang: English
.
Category: math
.
Summary: We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation. (English)
Keyword: stochastic permanence
Keyword: persistent in mean
Keyword: extinction
Keyword: stationary distribution
MSC: 34F05
MSC: 92D25
idZBL: Zbl 06819561
idMR: MR3736007
DOI: 10.21136/CMJ.2017.0350-15
.
Date available: 2017-11-20T14:51:24Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146954
.
Reference: [1] Allen, L. J. S.: Persistence and extinction in single-species reaction-diffusion models.Bull. Math. Biol. 45 (1983), 209-227. Zbl 0543.92020, MR 0707172, 10.1007/BF02462357
Reference: [2] Cerrai, S.: Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach.Lecture Notes in Mathematics 1762, Springer, Berlin (2001). Zbl 0983.60004, MR 1840644, 10.1007/b80743
Reference: [3] Chen, L. S., Chen, J.: Nonlinear Biological Dynamical System.Science Press, Beijing (1993).
Reference: [4] Prato, G. Da: Kolmogorov Equations for Stochastic PDEs.Advanced Courses in Mathematics-CRM Barcelona, Birkhäuser, Basel (2004). Zbl 1066.60061, MR 2111320, 10.1007/978-3-0348-7909-5
Reference: [5] Gard, T. C.: Introduction to Stochastic Differential Equations.Pure and Applied Mathematics 114, Marcel Dekker, New York (1988). Zbl 0628.60064, MR 0917064, 10.1002/asm.3150040209
Reference: [6] Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations.SIAM Rev. 43 (2001), 525-546. Zbl 0979.65007, MR 1872387, 10.1137/S0036144500378302
Reference: [7] Iked, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes.North-Holland Mathematical Library 24, North-Holland, Amsterdam; Kodansha, Tokyo (1989). Zbl 0684.60040, MR 1011252
Reference: [8] Ji, C., Jiang, D., Liu, H., Yang, Q.: Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation.Math. Probl. Eng. 2010 (2010), Article ID 684926, 18 pages. Zbl 1204.34065, MR 2670476, 10.1155/2010/684926
Reference: [9] Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation.J. Math. Anal. Appl. 359 (2009), 482-498. Zbl 1190.34064, MR 2546763, 10.1016/j.jmaa.2009.05.039
Reference: [10] Jiang, D., Shi, N.: A note on nonautonomous logistic equation with random perturbation.J. Math. Anal. Appl. 303 (2005), 164-172. Zbl 1076.34062, MR 2113874, 10.1016/j.jmaa.2004.08.027
Reference: [11] Jiang, D., Shi, N., Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation.J. Math. Anal. Appl. 340 (2008), 588-597. Zbl 1140.60032, MR 2376180, 10.1016/j.jmaa.2007.08.014
Reference: [12] Khas'minskiĭ, R.: Stochastic Stability of Differential Equations.Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Sijthoff Noordhoff, USA; Alphen aan den Rijn, The Netherlands (1980). Zbl 0441.60060, MR 0600653
Reference: [13] Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching.J. Math. Anal. Appl. 376 (2011), 11-28. Zbl 1205.92058, MR 2745384, 10.1016/j.jmaa.2010.10.053
Reference: [14] Liu, H., Yang, Q., Jiang, D.: The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences.Automatica 48 (2012), 820-825. Zbl 1246.93117, MR 2912805, 10.1016/j.automatica.2012.02.010
Reference: [15] Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems.J. Math. Anal. Appl. 375 (2011), 443-457. Zbl 1214.34045, MR 2735535, 10.1016/j.jmaa.2010.09.058
Reference: [16] Lu, Z., Takeuchi, Y.: Global asymptotic behavior in single-species discrete diffusion systems.J. Math. Biol. 32 (1993), 67-77. Zbl 0799.92014, MR 1256831, 10.1007/BF00160375
Reference: [17] Mao, X.: Stochastic Differential Equations and Their Applications.Ellis Horwood Series in Mathematics and Its Applications, Horwood Publishing, Chichester (1997). Zbl 0892.60057, MR 1475218, 10.1533/9780857099402
Reference: [18] Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching.Imperial College Press, London (2006). Zbl 1126.60002, MR 2256095, 10.1142/p473
Reference: [19] Mao, X., Yuan, C., Zou, J.: Stochastic differential delay equations of population dynamics.J. Math. Anal. Appl. 304 (2005), 296-320. Zbl 1062.92055, MR 2124664, 10.1016/j.jmaa.2004.09.027
Reference: [20] Okubo, A.: Diffusion and Ecological Problems: Mathematical Models.Biomathematics, vol. 10, Springer, Berlin (1980). Zbl 0422.92025, MR 0572962, 10.1002/bimj.4710240311
Reference: [21] Strang, G.: Linear Algebra and Its Applications.Academic Press (A Subsidiary of Harcourt Brace Jovanovich, Publishers), New York (1980). Zbl 0463.15001, MR 0575349
Reference: [22] Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems.SIAM J. Control Optim. 46 (2007), 1155-1179. Zbl 1140.93045, MR 2346378, 10.1137/060649343
.

Files

Files Size Format View
CzechMathJ_67-2017-4_1.pdf 1.498Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo