Title:
|
Population dynamical behavior of a single-species nonlinear diffusion system with random perturbation (English) |
Author:
|
Zu, Li |
Author:
|
Jiang, Daqing |
Author:
|
O'Regan, Donal |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
867-890 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We consider a single-species stochastic logistic model with the population's nonlinear diffusion between two patches. We prove the system is stochastically permanent and persistent in mean, and then we obtain sufficient conditions for stationary distribution and extinction. Finally, we illustrate our conclusions through numerical simulation. (English) |
Keyword:
|
stochastic permanence |
Keyword:
|
persistent in mean |
Keyword:
|
extinction |
Keyword:
|
stationary distribution |
MSC:
|
34F05 |
MSC:
|
92D25 |
idZBL:
|
Zbl 06819561 |
idMR:
|
MR3736007 |
DOI:
|
10.21136/CMJ.2017.0350-15 |
. |
Date available:
|
2017-11-20T14:51:24Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146954 |
. |
Reference:
|
[1] Allen, L. J. S.: Persistence and extinction in single-species reaction-diffusion models.Bull. Math. Biol. 45 (1983), 209-227. Zbl 0543.92020, MR 0707172, 10.1007/BF02462357 |
Reference:
|
[2] Cerrai, S.: Second Order PDE's in Finite and Infinite Dimension. A Probabilistic Approach.Lecture Notes in Mathematics 1762, Springer, Berlin (2001). Zbl 0983.60004, MR 1840644, 10.1007/b80743 |
Reference:
|
[3] Chen, L. S., Chen, J.: Nonlinear Biological Dynamical System.Science Press, Beijing (1993). |
Reference:
|
[4] Prato, G. Da: Kolmogorov Equations for Stochastic PDEs.Advanced Courses in Mathematics-CRM Barcelona, Birkhäuser, Basel (2004). Zbl 1066.60061, MR 2111320, 10.1007/978-3-0348-7909-5 |
Reference:
|
[5] Gard, T. C.: Introduction to Stochastic Differential Equations.Pure and Applied Mathematics 114, Marcel Dekker, New York (1988). Zbl 0628.60064, MR 0917064, 10.1002/asm.3150040209 |
Reference:
|
[6] Higham, D. J.: An algorithmic introduction to numerical simulation of stochastic differential equations.SIAM Rev. 43 (2001), 525-546. Zbl 0979.65007, MR 1872387, 10.1137/S0036144500378302 |
Reference:
|
[7] Iked, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes.North-Holland Mathematical Library 24, North-Holland, Amsterdam; Kodansha, Tokyo (1989). Zbl 0684.60040, MR 1011252 |
Reference:
|
[8] Ji, C., Jiang, D., Liu, H., Yang, Q.: Existence, uniqueness and ergodicity of positive solution of mutualism system with stochastic perturbation.Math. Probl. Eng. 2010 (2010), Article ID 684926, 18 pages. Zbl 1204.34065, MR 2670476, 10.1155/2010/684926 |
Reference:
|
[9] Ji, C., Jiang, D., Shi, N.: Analysis of a predator-prey model with modified Leslie-Gower and Holling-type II schemes with stochastic perturbation.J. Math. Anal. Appl. 359 (2009), 482-498. Zbl 1190.34064, MR 2546763, 10.1016/j.jmaa.2009.05.039 |
Reference:
|
[10] Jiang, D., Shi, N.: A note on nonautonomous logistic equation with random perturbation.J. Math. Anal. Appl. 303 (2005), 164-172. Zbl 1076.34062, MR 2113874, 10.1016/j.jmaa.2004.08.027 |
Reference:
|
[11] Jiang, D., Shi, N., Li, X.: Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation.J. Math. Anal. Appl. 340 (2008), 588-597. Zbl 1140.60032, MR 2376180, 10.1016/j.jmaa.2007.08.014 |
Reference:
|
[12] Khas'minskiĭ, R.: Stochastic Stability of Differential Equations.Monographs and Textbooks on Mechanics of Solids and Fluids. Mechanics: Analysis, 7. Sijthoff Noordhoff, USA; Alphen aan den Rijn, The Netherlands (1980). Zbl 0441.60060, MR 0600653 |
Reference:
|
[13] Li, X., Gray, A., Jiang, D., Mao, X.: Sufficient and necessary conditions of stochastic permanence and extinction for stochastic logistic populations under regime switching.J. Math. Anal. Appl. 376 (2011), 11-28. Zbl 1205.92058, MR 2745384, 10.1016/j.jmaa.2010.10.053 |
Reference:
|
[14] Liu, H., Yang, Q., Jiang, D.: The asymptotic behavior of stochastically perturbed DI SIR epidemic models with saturated incidences.Automatica 48 (2012), 820-825. Zbl 1246.93117, MR 2912805, 10.1016/j.automatica.2012.02.010 |
Reference:
|
[15] Liu, M., Wang, K.: Persistence and extinction in stochastic non-autonomous logistic systems.J. Math. Anal. Appl. 375 (2011), 443-457. Zbl 1214.34045, MR 2735535, 10.1016/j.jmaa.2010.09.058 |
Reference:
|
[16] Lu, Z., Takeuchi, Y.: Global asymptotic behavior in single-species discrete diffusion systems.J. Math. Biol. 32 (1993), 67-77. Zbl 0799.92014, MR 1256831, 10.1007/BF00160375 |
Reference:
|
[17] Mao, X.: Stochastic Differential Equations and Their Applications.Ellis Horwood Series in Mathematics and Its Applications, Horwood Publishing, Chichester (1997). Zbl 0892.60057, MR 1475218, 10.1533/9780857099402 |
Reference:
|
[18] Mao, X., Yuan, C.: Stochastic Differential Equations with Markovian Switching.Imperial College Press, London (2006). Zbl 1126.60002, MR 2256095, 10.1142/p473 |
Reference:
|
[19] Mao, X., Yuan, C., Zou, J.: Stochastic differential delay equations of population dynamics.J. Math. Anal. Appl. 304 (2005), 296-320. Zbl 1062.92055, MR 2124664, 10.1016/j.jmaa.2004.09.027 |
Reference:
|
[20] Okubo, A.: Diffusion and Ecological Problems: Mathematical Models.Biomathematics, vol. 10, Springer, Berlin (1980). Zbl 0422.92025, MR 0572962, 10.1002/bimj.4710240311 |
Reference:
|
[21] Strang, G.: Linear Algebra and Its Applications.Academic Press (A Subsidiary of Harcourt Brace Jovanovich, Publishers), New York (1980). Zbl 0463.15001, MR 0575349 |
Reference:
|
[22] Zhu, C., Yin, G.: Asymptotic properties of hybrid diffusion systems.SIAM J. Control Optim. 46 (2007), 1155-1179. Zbl 1140.93045, MR 2346378, 10.1137/060649343 |
. |