Title:
|
C*-algebras have a quantitative version of Pełczyński's property (V) (English) |
Author:
|
Krulišová, Hana |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
67 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
937-951 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A Banach space $X$ has Pełczyński's property (V) if for every Banach space $Y$ every unconditionally converging operator $T\colon X\to Y$ is weakly compact. H. Pfitzner proved that $C^*$-algebras have Pełczyński's property (V). In the preprint (Krulišová, (2015)) the author explores possible quantifications of the property (V) and shows that $C(K)$ spaces for a compact Hausdorff space $K$ enjoy a quantitative version of the property (V). In this paper we generalize this result by quantifying Pfitzner's theorem. Moreover, we prove that in dual Banach spaces a quantitative version of the property (V) implies a quantitative version of the Grothendieck property. (English) |
Keyword:
|
Pełczyński's property (V) |
Keyword:
|
$C^*$-algebra |
Keyword:
|
Grothendieck property |
MSC:
|
46B04 |
MSC:
|
46L05 |
MSC:
|
47B10 |
idZBL:
|
Zbl 06819564 |
idMR:
|
MR3736010 |
DOI:
|
10.21136/CMJ.2017.0242-16 |
. |
Date available:
|
2017-11-20T14:53:02Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146958 |
. |
Reference:
|
[1] Angosto, C., Cascales, B.: Measures of weak noncompactness in Banach spaces.Topology Appl. 156 (2009), 1412-1421. Zbl 1176.46012, MR 2502017, 10.1016/j.topol.2008.12.011 |
Reference:
|
[2] Behrends, E.: New proofs of Rosenthal's $\ell^1$-theorem and the Josefson-Nissenzweig theorem.Bull. Pol. Acad. Sci., Math. 43 (1995), 283-295. Zbl 0847.46007, MR 1414785 |
Reference:
|
[3] Bendová, H.: Quantitative Grothendieck property.J. Math. Anal. Appl. 412 (2014), 1097-1104. Zbl 1322.46008, MR 3147271, 10.1016/j.jmaa.2013.11.033 |
Reference:
|
[4] Blasi, F. S. De: On a property of the unit sphere in a Banach space.Bull. Math. Soc. Sci. Math. Répub. Soc. Roum., Nouv. Sér. 21 (1977), 259-262. Zbl 0365.46015, MR 0482402 |
Reference:
|
[5] Gasparis, I.: $\epsilon$-weak Cauchy sequences and a quantitative version of Rosenthal's $\ell_1$-theorem.J. Math. Anal. Appl. 434 (2016), 1160-1165. Zbl 06509536, MR 3415714, 10.1016/j.jmaa.2015.09.079 |
Reference:
|
[6] Harmand, P., Werner, D., Werner, W.: $M$-Ideals in Banach Spaces and Banach Algebras.Lecture Notes in Mathematics 1547, Springer, Berlin (1993). Zbl 0789.46011, MR 1238713, 10.1007/BFb0084355 |
Reference:
|
[7] Kalenda, O. F. K., Pfitzner, H., Spurný, J.: On quantification of weak sequential completeness.J. Funct. Anal. 260 (2011), 2986-2996. Zbl 1248.46012, MR 2774062, 10.1016/j.jfa.2011.02.006 |
Reference:
|
[8] Krulišová, H.: Quantification of Pe{ł}czyński's property (V).To appear in Math. Nachr. |
Reference:
|
[9] Lechner, J.: 1-Grothendieck $C(K)$ spaces.J. Math. Anal. Appl. 446 (2017), 1362-1371. Zbl 1364.46015, MR 3563039, 10.1016/j.jmaa.2016.06.038 |
Reference:
|
[10] Pfitzner, H.: Weak compactness in the dual of a $C^{\ast}$-algebra is determined commutatively.Math. Ann. 298 (1994), 349-371. Zbl 0791.46035, MR 1256621, 10.1007/BF01459739 |
Reference:
|
[11] Rudin, W.: Real and Complex Analysis.McGraw-Hill, New York (1987). Zbl 0925.00005, MR 0924157 |
Reference:
|
[12] Simons, S.: On the Dunford-Pettis property and Banach spaces that contain $c_0$.Math. Ann. 216 (1975), 225-231. Zbl 0294.46010, MR 0402470, 10.1007/BF01430962 |
Reference:
|
[13] Takesaki, M.: Theory of Operator Algebras I.Encyclopaedia of Mathematical Sciences 124, Operator Algebras and Non-Commutative Geometry 5, Springer, Berlin (2002). Zbl 0990.46034, MR 1873025 |
. |