Previous |  Up |  Next

Article

Title: Classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center (English)
Author: Ren, Bin
Author: Zhu, Lin Sheng
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 67
Issue: 4
Year: 2017
Pages: 953-965
Summary lang: English
.
Category: math
.
Summary: A Lie algebra $L$ is called 2-step nilpotent if $L$ is not abelian and $[L, L]$ lies in the center of $L$. 2-step nilpotent Lie algebras are useful in the study of some geometric problems, and their classification has been an important problem in Lie theory. In this paper, we give a classification of 2-step nilpotent Lie algebras of dimension 9 with 2-dimensional center. (English)
Keyword: related set
Keyword: basis
Keyword: derivation
MSC: 17B05
MSC: 17B30
idZBL: Zbl 06819565
idMR: MR3736011
DOI: 10.21136/CMJ.2017.0253-16
.
Date available: 2017-11-20T14:53:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/146959
.
Reference: [1] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie filiformes de dimension 8.Arch. Math. 50 (1988), 511-525 French. Zbl 0628.17005, MR 0948265, 10.1007/BF01193621
Reference: [2] Ancochea-Bermudez, J. M., Goze, M.: Classification des algèbres de Lie nilpotentes complexes de dimension 7.Arch. Math. 52 (1989), 175-185 French. Zbl 0672.17005, MR 0985602, 10.1007/BF01191272
Reference: [3] Galitski, L. Y., Timashev, D. A.: On classification of metabelian Lie algebras.J. Lie Theory 9 (1999), 125-156. Zbl 0923.17015, MR 1680007
Reference: [4] Gauger, M. A.: On the classification of metabelian Lie algebras.Trans. Am. Math. Soc. 179 (1973), 293-329. Zbl 0267.17015, MR 0325719, 10.2307/1996506
Reference: [5] Gong, M.-P.: Classification of Nilpotent Lie Algebras of Dimension 7 (over Algebraically Closed Fields and R).Ph.D. Thesis, University of Waterloo, Waterloo (1998). MR 2698220
Reference: [6] Goze, M., Khakimdjanov, Y.: Nilpotent Lie Algebras.Mathematics and Its Applications 361, Kluwer Academic Publishers, Dordrecht (1996). Zbl 0845.17012, MR 1383588, 10.1007/978-94-017-2432-6
Reference: [7] Goze, M., Remm, E.: $k$-step nilpotent Lie algebras.Georgian Math. J. 22 (2015), 219-234. Zbl 06458841, MR 3353570, 10.1515/gmj-2015-0022
Reference: [8] Khuhirun, B., Misra, K. C., Stitzinger, E.: On nilpotent Lie algebras of small breadth.J. Algebra 444 (2015), 328-338. Zbl 1358.17013, MR 3406181, 10.1016/j.jalgebra.2015.07.036
Reference: [9] Leger, G., Luks, E.: On derivations and holomorphs of nilpotent Lie algebras.Nagoya Math. J. 44 (1971), 39-50. Zbl 0264.17003, MR 0297828, 10.1017/s0027763000014525
Reference: [10] Remm, E.: Breadth and characteristic sequence of nilpotent Lie algebras.Commun. Algebra 45 (2017), 2956-2966. MR 3594570, 10.1080/00927872.2016.1233238
Reference: [11] Ren, B., Meng, D. J.: Some completable 2-step nilpotent Lie algebras I.Linear Algebra Appl. 338 (2001), 77-98. Zbl 0992.17005, MR 1860314
Reference: [12] Ren, B., Zhou, L. S.: Classification of 2-step nilpotent Lie algebras of dimension 8 with 2-dimensional center.Commun. Algebra 39 (2011), 2068-2081. Zbl 1290.17004, MR 2813164, 10.1080/00927872.2010.483342
Reference: [13] Revoy, P.: Algèbres de Lie métabéliennes.Ann. Fac. Sci. Toulouse, V. Ser., Math. 2 (1980), 93-100 French. Zbl 0447.17007, MR 0595192, 10.5802/afst.547
Reference: [14] Santharoubane, L. J.: Kac-Moody Lie algebras and the classification of nilpotent Lie algebras of maximal rank.Can. J. Math. 34 (1982), 1215-1239. Zbl 0495.17011, MR 0678665, 10.4153/CJM-1982-084-5
Reference: [15] Seeley, C.: 7-dimensional nilpotent Lie algebras.Trans. Am. Math. Soc. 335 (1993), 479-496. Zbl 0770.17003, MR 1068933, 10.2307/2154390
Reference: [16] Umlauf, K. A.: Über die Zusammensetzung der endlichen continuierlichen Transformationsgruppen insbesondere der Gruppen vom Range Null.Ph.D. Thesis, University of Leipzig, Leipzig German (1891).
Reference: [17] Yan, Z., Deng, S.: The classification of two step nilpotent complex Lie algebras of dimension 8.Czech. Math. J. 63 (2013), 847-863. Zbl 1291.17013, MR 3125659, 10.1007/s10587-013-0057-6
.

Files

Files Size Format View
CzechMathJ_67-2017-4_5.pdf 281.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo