Previous |  Up |  Next

Article

Title: Approximate tri-quadratic functional equations via Lipschitz conditions (English)
Author: Nikoufar, Ismail
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 4
Year: 2017
Pages: 337-344
Summary lang: English
.
Category: math
.
Summary: In this paper, we consider Lipschitz conditions for tri-quadratic functional equations. We introduce a new notion similar to that of the left invariant mean and prove that a family of functions with this property can be approximated by tri-quadratic functions via a Lipschitz norm. (English)
Keyword: tri-quadratic functional equation
Keyword: Lipschitz space
Keyword: stability
MSC: 39B52
MSC: 39B82
idZBL: Zbl 06819589
idMR: MR3739021
DOI: 10.21136/MB.2017.0028-16
.
Date available: 2017-11-20T15:00:38Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146973
.
Reference: [1] Czerwik, S., Dłutek, K.: Stability of the quadratic functional equation in Lipschitz spaces.J. Math. Anal. Appl. 293 (2004), 79-88. Zbl 1052.39030, MR 2052533, 10.1016/j.jmaa.2003.12.034
Reference: [2] Ebadian, A., Ghobadipour, N., Nikoufar, I., Gordji, M. Eshaghi: Approximation of the cubic functional equations in Lipschitz spaces.Anal. Theory Appl. 30 (2014), 354-362. Zbl 1340.39040, MR 3303361, 10.4208/ata.2014.v30.n4.2
Reference: [3] Jung, S.-M., Sahoo, P. K.: Hyers-Ulam stability of the quadratic equation of Pexider type.J. Korean Math. Soc. 38 (2001), 645-656. Zbl 0980.39023, MR 1826928
Reference: [4] Lee, J. R., Jang, S.-Y., Park, C., Shin, D. Y.: Fuzzy stability of quadratic functional equations.Adv. Difference Equ. 2010 (2010), Article ID 412160, 16 pages. Zbl 1192.39021, MR 2652450, 10.1155/2010/412160
Reference: [5] Nikoufar, I.: Lipschitz approximation of the $n$-quadratic functional equations.Mathematica (Cluj) - Tome 57 (2015), 67-74. MR 3611703
Reference: [6] Nikoufar, I.: Quartic functional equations in Lipschitz spaces.Rend. Circ. Mat. Palermo, Ser. 2 64 (2015), 171-176. Zbl 1328.39046, MR 3371402, 10.1007/s12215-014-0187-1
Reference: [7] Nikoufar, I.: Erratum to: Quartic functional equations in Lipschitz spaces.Rend. Circ. Mat. Palermo, Ser. 2 65 (2016), 345-350. Zbl 06643403, MR 3535460, 10.1007/s12215-015-0222-x
Reference: [8] Nikoufar, I.: Lipschitz criteria for bi-quadratic functional equations.Commun. Korean Math. Soc 31 (2016), 819-825. Zbl 1372.39032, MR 3570448, 10.4134/CKMS.c150249
Reference: [9] Park, C.-G.: On the stability of the quadratic mapping in Banach modules.J. Math. Anal. Appl. 276 (2002), 135-144. Zbl 1017.39010, MR 1944341, 10.1016/S0022-247X(02)00387-6
Reference: [10] Park, W.-G., Bae, J.-H.: Approximate behavior of bi-quadratic mappings in quasinormed spaces.J. Inequal. Appl. (2010), Article ID 472721, 8 pages. Zbl 1216.39039, MR 2665495, 10.1155/2010/472721
Reference: [11] Skof, F.: Local properties and approximations of operators.Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 Italian. Zbl 0599.39007, MR 0858541, 10.1007/BF02924890
Reference: [12] Tabor, J.: Lipschitz stability of the Cauchy and Jensen equations.Result. Math. 32 (1997), 133-144. Zbl 0890.39023, MR 1464682, 10.1007/BF03322533
Reference: [13] Tabor, J.: Superstability of the Cauchy, Jensen and isometry equations.Result. Math. 35 (1999), 355-379. Zbl 0929.39015, MR 1694913, 10.1007/BF03322824
.

Files

Files Size Format View
MathBohem_142-2017-4_1.pdf 221.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo