Title:
|
Approximate tri-quadratic functional equations via Lipschitz conditions (English) |
Author:
|
Nikoufar, Ismail |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
142 |
Issue:
|
4 |
Year:
|
2017 |
Pages:
|
337-344 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
In this paper, we consider Lipschitz conditions for tri-quadratic functional equations. We introduce a new notion similar to that of the left invariant mean and prove that a family of functions with this property can be approximated by tri-quadratic functions via a Lipschitz norm. (English) |
Keyword:
|
tri-quadratic functional equation |
Keyword:
|
Lipschitz space |
Keyword:
|
stability |
MSC:
|
39B52 |
MSC:
|
39B82 |
idZBL:
|
Zbl 06819589 |
idMR:
|
MR3739021 |
DOI:
|
10.21136/MB.2017.0028-16 |
. |
Date available:
|
2017-11-20T15:00:38Z |
Last updated:
|
2020-07-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146973 |
. |
Reference:
|
[1] Czerwik, S., Dłutek, K.: Stability of the quadratic functional equation in Lipschitz spaces.J. Math. Anal. Appl. 293 (2004), 79-88. Zbl 1052.39030, MR 2052533, 10.1016/j.jmaa.2003.12.034 |
Reference:
|
[2] Ebadian, A., Ghobadipour, N., Nikoufar, I., Gordji, M. Eshaghi: Approximation of the cubic functional equations in Lipschitz spaces.Anal. Theory Appl. 30 (2014), 354-362. Zbl 1340.39040, MR 3303361, 10.4208/ata.2014.v30.n4.2 |
Reference:
|
[3] Jung, S.-M., Sahoo, P. K.: Hyers-Ulam stability of the quadratic equation of Pexider type.J. Korean Math. Soc. 38 (2001), 645-656. Zbl 0980.39023, MR 1826928 |
Reference:
|
[4] Lee, J. R., Jang, S.-Y., Park, C., Shin, D. Y.: Fuzzy stability of quadratic functional equations.Adv. Difference Equ. 2010 (2010), Article ID 412160, 16 pages. Zbl 1192.39021, MR 2652450, 10.1155/2010/412160 |
Reference:
|
[5] Nikoufar, I.: Lipschitz approximation of the $n$-quadratic functional equations.Mathematica (Cluj) - Tome 57 (2015), 67-74. MR 3611703 |
Reference:
|
[6] Nikoufar, I.: Quartic functional equations in Lipschitz spaces.Rend. Circ. Mat. Palermo, Ser. 2 64 (2015), 171-176. Zbl 1328.39046, MR 3371402, 10.1007/s12215-014-0187-1 |
Reference:
|
[7] Nikoufar, I.: Erratum to: Quartic functional equations in Lipschitz spaces.Rend. Circ. Mat. Palermo, Ser. 2 65 (2016), 345-350. Zbl 06643403, MR 3535460, 10.1007/s12215-015-0222-x |
Reference:
|
[8] Nikoufar, I.: Lipschitz criteria for bi-quadratic functional equations.Commun. Korean Math. Soc 31 (2016), 819-825. Zbl 1372.39032, MR 3570448, 10.4134/CKMS.c150249 |
Reference:
|
[9] Park, C.-G.: On the stability of the quadratic mapping in Banach modules.J. Math. Anal. Appl. 276 (2002), 135-144. Zbl 1017.39010, MR 1944341, 10.1016/S0022-247X(02)00387-6 |
Reference:
|
[10] Park, W.-G., Bae, J.-H.: Approximate behavior of bi-quadratic mappings in quasinormed spaces.J. Inequal. Appl. (2010), Article ID 472721, 8 pages. Zbl 1216.39039, MR 2665495, 10.1155/2010/472721 |
Reference:
|
[11] Skof, F.: Local properties and approximations of operators.Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 Italian. Zbl 0599.39007, MR 0858541, 10.1007/BF02924890 |
Reference:
|
[12] Tabor, J.: Lipschitz stability of the Cauchy and Jensen equations.Result. Math. 32 (1997), 133-144. Zbl 0890.39023, MR 1464682, 10.1007/BF03322533 |
Reference:
|
[13] Tabor, J.: Superstability of the Cauchy, Jensen and isometry equations.Result. Math. 35 (1999), 355-379. Zbl 0929.39015, MR 1694913, 10.1007/BF03322824 |
. |