Previous |  Up |  Next

Article

Title: Epimorphisms between finite MV-algebras (English)
Author: Figallo, Aldo V.
Author: Lattanzi, Marina B.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 142
Issue: 4
Year: 2017
Pages: 345-355
Summary lang: English
.
Category: math
.
Summary: MV-algebras were introduced by Chang to prove the completeness of the infinite-valued Łukasiewicz propositional calculus. Recently, algebraic theory of MV-algebras has been intensively studied. Wajsberg algebras are just a reformulation of Chang MV-algebras where implication is used instead of disjunction. Using these equivalence, in this paper we provide conditions for the existence of an epimorphism between two finite MV-algebras $A$ and $B$. Specifically, we define the mv-functions with domain in the ordered set of prime elements of $B$ and with range in the ordered set of prime elements of $A$, and prove that every epimorphism from $A$ to $B$ can be uniquely constructed from an mv-function. (English)
Keyword: MV-algebras
Keyword: mv-function
Keyword: epimorphism
MSC: 06D35
MSC: 08A35
idZBL: Zbl 06819590
idMR: MR3739022
DOI: 10.21136/MB.2017.0077-14
.
Date available: 2017-11-20T15:01:23Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146975
.
Reference: [1] Abad, M., Figallo, A.: On Łukasiewicz Homomorphisms.Facultad de Filosofía, Humanidades y Artes, Universidad Nacional de San Juan (1992).
Reference: [2] Berman, J., Blok, W. J.: Free Łukasiewicz and hoop residuation algebras.Stud. Log. 77 (2004), 153-180. Zbl 1062.03062, MR 2080237, 10.1023/B:STUD.0000037125.49866.50
Reference: [3] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras.Annals of Discrete Mathematics 49. North-Holland, Amsterdam (1991). Zbl 0726.06007, MR 1112790, 10.1016/s0167-5060(08)x7005-0
Reference: [4] Chang, C. C.: Algebraic analysis of many valued logics.Trans. Am. Math. Soc. 88 (1958), 467-490. Zbl 0084.00704, MR 0094302, 10.2307/1993227
Reference: [5] Chang,, C. C.: A new proof of the completeness of Łukasiewicz axioms.Trans. Am. Math. Soc. 93 (1959), 74-80. Zbl 0093.01104, MR 0122718, 10.2307/1993423
Reference: [6] Cignoli, R., D'Ottaviano, I. M. L., Mundici, D.: Algebraic Foundations of Many-Valued Reasoning.Trends in Logic-Studia Logica Library 7. Kluwer Academic Publishers, Dordrecht (2000). Zbl 0937.06009, MR 1786097, 10.1007/978-94-015-9480-6
Reference: [7] Cignoli, R., Dubuc, E. J., Mundici, D.: Extending Stone duality to multisets and locally finite $\rm MV$-algebras.J. Pure Appl. Algebra 189 (2004), 37-59. Zbl 1055.06004, MR 2038562, 10.1016/j.jpaa.2003.10.021
Reference: [8] Cignoli, R., Marra, V.: Stone duality for real-valued multisets.Forum Math. 24 (2012), 1317-1331. Zbl 1273.06006, MR 2996994, 10.1515/form.2011.109
Reference: [9] Figallo, A. V.: Algebras implicativas de Łukasiewicz $(n+1)$-valuadas con diversas operaciones adicionales.Tesis Doctoral. Univ. Nac. del Sur (1990).
Reference: [10] Font, J. M., Rodríguez, A. J., Torrens, A.: Wajsberg algebras.Stochastica 8 (1984), 5-31. Zbl 0557.03040, MR 0780136
Reference: [11] Komori, Y.: Super-Łukasiewicz implicational logics.Nagoya Math. J. 72 (1978), 127-133. Zbl 0363.02015, MR 0514894, 10.1017/S0027763000018249
Reference: [12] Komori, Y.: Super Łukasiewicz propositional logics.Nagoya Math. J. 84 (1981), 119-133. Zbl 0482.03007, MR 0641149, 10.1017/S0027763000019577
Reference: [13] Łukasiewicz, J.: On three-valued logics.Ruch filozoficzny 5 (1920), 169-171 Polish.
Reference: [14] Łukasiewicz, J., Tarski, A.: Untersuchungen über den Aussagenkalkül.C. R. Soc. Sc. Varsovie 23 (1930), 30-50. Zbl 57.1319.01
Reference: [15] Martínez, N. G.: The Priestley duality for Wajsberg algebras.Stud. Log. 49 (1990), 31-46. Zbl 0717.03026, MR 1078437, 10.1007/BF00401552
Reference: [16] Monteiro, L. F.: Number of epimorphisms between finite Łukasiewicz algebras.Bull. Math. Soc. Sci. Math. Roum., Nouv. Sér. 49(97) (2006), 177-187. Zbl 1150.03346, MR 2223313
Reference: [17] Rodríguez, A. J.: Un studio algebraico de los cálculos proposicionales de Łukasiewicz.Ph. Doc. Diss. Universitat de Barcelona (1980).
Reference: [18] Rodríguez, A. J., Torrens, A., Verdú, V.: Łukasiewicz logic and Wajsberg algebras.Bull. Sect. Log., Pol. Acad. Sci. 19 (1990), 51-55. Zbl 0717.03027, MR 1077992
.

Files

Files Size Format View
MathBohem_142-2017-4_2.pdf 263.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo