Previous |  Up |  Next

Article

Title: Nonrectifiable oscillatory solutions of second order linear differential equations (English)
Author: Kanemitsu, Takanao
Author: Tanaka, Satoshi
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 193-201
Summary lang: English
.
Category: math
.
Summary: The second order linear differential equation \begin{equation*} (p(x)y^{\prime })^{\prime }+q(x)y=0\,, \quad x \in (0,x_0] \end{equation*} is considered, where $p$, $q \in C^1(0,x_0]$, $p(x)>0$, $q(x)>0$ for $x \in (0,x_0]$. Sufficient conditions are established for every nontrivial solutions to be nonrectifiable oscillatory near $x=0$ without the Hartman–Wintner condition. (English)
Keyword: oscillatory
Keyword: nonrectifiable
Keyword: second order linear differential equation
MSC: 34C10
idZBL: Zbl 06819525
idMR: MR3733066
DOI: 10.5817/AM2017-4-193
.
Date available: 2017-11-22T09:39:17Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146981
.
Reference: [1] Coppel, W.A.: Disconjugacy.Lecture Notes in Math., vol. 220, Springer–Verlag, Berlin–New York, 1971. Zbl 0224.34003, MR 0460785, 10.1007/BFb0058618
Reference: [2] Došlý, O., Řehák, P.: Half-linear differential equations.North-Holland Math. Stud., vol. 202, Elsevier Science B.V., Amsterdam, 2005. Zbl 1090.34001, MR 2158903
Reference: [3] Elias, U.: Oscillation theory of two-term differential equations.Math. Appl., vol. 396, Kluwer Acad. Publ., Dordrecht, 1997. Zbl 0878.34022, MR 1445292
Reference: [4] Hartman, P.: Ordinary differential equations.Classics Appl. Math, vol. 38, SIAM, Philadelphia, PA, 2002. Zbl 1009.34001, MR 1929104
Reference: [5] Kiguradze, I.T., Chanturia, T.A.: Asymptotic properties of solutions of nonautonomous ordinary differential equations.Math. Appl., vol. 89, Kluwer Acad. Publ., Dordrecht, 1993, Translated from the 1985 Russian original. Zbl 0782.34002, MR 1220223
Reference: [6] Kusano, T., Yoshida, N.: Existence and qualitative behavior of oscillatory solutions of second order linear ordinary differential equations.Acta Math. Univ. Comenian. (N.S.) 86 (2017), 23–50. Zbl 1374.34098, MR 3602515
Reference: [7] Kwong, M.K., Pašić, M., Wong, J.S.W.: Rectifiable oscillations in second-order linear differential equations.J. Differential Equations 245 (2008), 2333–2351. Zbl 1168.34027, MR 2446834, 10.1016/j.jde.2008.05.016
Reference: [8] Pašić, M.: Minkowski-Bouligand dimension of solutions of the one-dimensional $p$-Laplacian.J. Differential Equations 190 (2003), 268–305. Zbl 1054.34034, MR 1970964, 10.1016/S0022-0396(02)00149-3
Reference: [9] Pašić, M.: Rectifiability of solutions of the one-dimensional $p$-Laplacian.Electron. J. Differential Equations 46 (2005), 8pp. Zbl 1129.35402, MR 2135257
Reference: [10] Pašić, M.: Rectifiable and unrectifiable oscillations for a class of second-order linear differential equations of Euler type.J. Math. Anal. Appl. 335 (2007), 724–738. Zbl 1126.34023, MR 2340351, 10.1016/j.jmaa.2007.01.099
Reference: [11] Pašić, M.: Rectifiable and unrectifiable oscillations for a generalization of the Riemann-Weber version of Euler differential equation.Georgian Math. J. 15 (2008), 759–774. Zbl 1172.34025, MR 2494972
Reference: [12] Pašić, M., Raguž, A.: Rectifiable oscillations and singular behaviour of solutions of second-order linear differential equations.Int. J. Math. Anal. 2 (2008), 477–490. Zbl 1181.34045, MR 2482731
Reference: [13] Pašić, M., Tanaka, S.: Rectifiable oscillations of self-adjoint and damped linear differential equations of second-order.J. Math. Anal. Appl. 381 (2011), 27–42. Zbl 1223.34047, MR 2796190, 10.1016/j.jmaa.2011.03.051
Reference: [14] Swanson, C.A.: Comparison and oscillation theory of linear differential equations.Math. Sci. Engrg., vol. 48, Academic Press, New York-London, 1968. Zbl 0191.09904, MR 0463570
Reference: [15] Wong, J.S.W.: On rectifiable oscillation of Euler type second order linear differential equations.Electron. J. Qual. Theory Differ. Equ. 20 (2007), 12pp. Zbl 1182.34049, MR 2346353
.

Files

Files Size Format View
ArchMathRetro_053-2017-4_1.pdf 518.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo