Previous |  Up |  Next

Article

Title: Circular units of real abelian fields with four ramified primes (English)
Author: Sedláček, Vladimír
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 221-252
Summary lang: English
.
Category: math
.
Summary: In this paper we study the groups of circular numbers and circular units in Sinnott’s sense in real abelian fields with exactly four ramified primes under certain conditions. More specifically, we construct $\mathbb{Z}$-bases for them in five special infinite families of cases. We also derive some results about the corresponding module of relations (in one family of cases, we show that the module of Ennola relations is cyclic). The paper is based upon the thesis [6], which builds upon the results of the paper [2]. (English)
Keyword: circular units
Keyword: abelian fields
Keyword: four ramified primes
Keyword: Ennola relations
MSC: 11R20
idZBL: Zbl 06819527
idMR: MR3733068
DOI: 10.5817/AM2017-4-221
.
Date available: 2017-11-22T09:42:55Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146984
.
Reference: [1] Dohmae, K.: A note on Sinnott’s index formula.Acta Arith. 82 (1997), 57–67. Zbl 0887.11046, MR 1475766, 10.4064/aa-82-1-57-67
Reference: [2] Kučera, R., Salami, A.: Circular units of an abelian field ramified at three primes.J. Number Theory 163 (2016), 296–315. DOI: http://dx.doi.org/https://doi.org/10.1016/j.jnt.2015.11.023 MR 3459572, 10.1016/j.jnt.2015.11.023
Reference: [3] Lettl, G.: A note on Thaine’s circular units.J. Number Theory 35 (1990), 224– 226. DOI: http://dx.doi.org/http://dx.doi.org/10.1016/0022-314X(90)90115-8 Zbl 0705.11064, MR 1057325, 10.1016/0022-314X(90)90115-8
Reference: [4] Rubin, K.: Global units and ideal class groups.Invent. Math. 89 (1987), 511–526. Zbl 0628.12007, 10.1007/BF01388983
Reference: [5] Salami, A.: Bases of the group of cyclotomic units of some real abelian extension.Ph.D. thesis, Université Laval Québec, 2014.
Reference: [6] Sedláček, V.: Circular units of abelian fields.Master's thesis, Masaryk University, Faculty of Science, Brno, 2017, [online], [cit. 2017-07-17].
Reference: [7] Sinnott, W.: On the Stickelberger ideal and the circular units of an abelian field.Invent. Math. 62 (1980/81), 181–234. Zbl 0465.12001, MR 0595586, 10.1007/BF01389158
Reference: [8] Thaine, F.: On the ideal class groups of real abelian number fields.Ann. of Math. (2) 128 (1988), 1–18. Zbl 0665.12003, MR 0951505
.

Files

Files Size Format View
ArchMathRetro_053-2017-4_3.pdf 618.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo