Previous |  Up |  Next

Article

Title: Estimating the critical determinants of a class of three-dimensional star bodies (English)
Author: Nowak, Werner Georg
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 2
Year: 2017
Pages: 149-157
Summary lang: English
.
Category: math
.
Summary: In the problem of (simultaneous) Diophantine approximation in~$\mathbb{R}^3$ (in the spirit of Hurwitz's theorem), lower bounds for the critical determinant of the special three-dimensional body $$ K_2:\quad (y^2+z^2)(x^2+y^2+z^2)\le 1 $$ play an important role; see [1], [6]. This article deals with estimates from below for the critical determinant $\Delta (K_c)$ of more general star bodies $$ K_c:\quad (y^2+z^2)^{c/2}(x^2+y^2+z^2)\le 1, $$ where $c$ is any positive constant. These are obtained by inscribing into $K_c$ either a double cone, or an ellipsoid, or a double paraboloid, depending on the size of $c$. (English)
Keyword: Geometry of numbers; critical determinant; simultaneous Diophantine approximation
MSC: 11H16
MSC: 11J13
idZBL: Zbl 06888205
idMR: MR3745434
.
Date available: 2018-02-05T14:42:41Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147063
.
Reference: [1] Armitage, J.V.: On a method of Mordell in the geometry of numbers.Mathematika, 2, 2, 1955, 132-140, Zbl 0066.03602, MR 0077574, 10.1112/S0025579300000772
Reference: [2] Davenport, H., Mahler, K.: Simultaneous Diophantine approximation.Duke Math. J., 13, 1946, 105-111, Zbl 0060.12000, MR 0016068, 10.1215/S0012-7094-46-01311-7
Reference: [3] Davenport, H.: On a theorem of Furtwängler.J. London Math.Soc., 30, 1955, 185-195, Zbl 0064.04501, MR 0067943
Reference: [4] Gruber, P.M., Lekkerkerker, C.G.: Geometry of numbers.1987, North Holland, Amsterdam, Zbl 0611.10017, MR 0893813
Reference: [5] Minkowski, H.: Dichteste gitterförmige Lagerung kongruenter Körper.Nachr. Kön. Ges. Wiss. Göttingen, 1904, 311-355,
Reference: [6] Nowak, W.G.: The critical determinant of the double paraboloid and Diophantine approximation in $\mathbb{R}^3$ and $\mathbb{R}^4$.Math. Pannonica, 10, 1999, 111-122, MR 1678107
Reference: [7] Nowak, W.G.: Diophantine approximation in $\mathbb{R}^s$: On a method of Mordell and Armitage.Algebraic number theory and Diophantine analysis. Proceedings of the conference held in Graz, Austria, August 30 to September 5, 1998, W. de Gruyter, Berlin, 2000, 339-349, MR 1770472
Reference: [8] Nowak, W.G.: Lower bounds for simultaneous Diophantine approximation constants.Comm. Math., 22, 1, 2014, 71-76, Zbl 1368.11063, MR 3233728
Reference: [9] Nowak, W.G.: Simultaneous Diophantine approximation: Searching for analogues of Hurwitz's theorem.T.M. Rassias and P.M. Pardalos (eds.), Essays in mathematics and its applications, 2016, 181-197, Springer, Switzerland, MR 3526920
Reference: [10] Nowak, W.G.: On the critical determinants of certain star bodies.Comm. Math., 25, 1, 2017, 5-11, MR 3667072, 10.1515/cm-2017-0002
Reference: [11] Ollerenshaw, K.: The critical lattices of a sphere.J. London Math. Soc., 23, 1949, 297-299, Zbl 0036.31103, MR 0028353
Reference: [12] Whitworth, J.V.: The critical lattices of the double cone.Proc. London Math. Soc., 2, 1, 1951, 422-443, Zbl 0044.04302, MR 0042452, 10.1112/plms/s2-53.6.422
.

Files

Files Size Format View
ActaOstrav_25-2017-2_5.pdf 4.558Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo