Previous |  Up |  Next

Article

Title: The Existence of a Generalized Solution of an $m$-Point Nonlocal Boundary Value Problem (English)
Author: Devadze, David
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 25
Issue: 2
Year: 2017
Pages: 159-169
Summary lang: English
.
Category: math
.
Summary: An $m$-point nonlocal boundary value problem is posed for quasilinear differential equations of first order on the plane. Nonlocal boundary value problems are investigated using the algorithm of reducing nonlocal boundary value problems to a sequence of Riemann-Hilbert problems for a generalized analytic function. The conditions for the existence and uniqueness of a generalized solution in the space are considered. (English)
Keyword: Nonlocal boundary value problem
Keyword: generalized solution.
MSC: 35D05
idZBL: Zbl 06888206
idMR: MR3745435
.
Date available: 2018-02-05T14:45:11Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147064
.
Reference: [1] Ashyralyev, A., Gercek, O.: Nonlocal boundary value problem for elliptic-parabolic differential and difference equations.Discrete Dyn. Nat. Soc., 2008, 16p, MR 2457148
Reference: [2] Beals, R.: Nonlocal Elliptic Boundary Value Problems.Bull. Amer. Math. Soc., 70, 5, 1964, 693-696, Zbl 0125.33301, MR 0167700, 10.1090/S0002-9904-1964-11166-6
Reference: [3] Beridze, V., Devadze, D., Meladze, H.: On one nonlocal boundary value problem for quasilinear differential equations.Proceedings of A. Razmadze Mathematical Institute, 165, 2014, 31-39, Zbl 1315.35101, MR 3300597
Reference: [4] Berikelashvili, G.: Construction and analysisi of difference schemes of the rate convergence.Memoirs of Diff. Euqat. and Math. Physics, 38, 2006, 1-36, MR 2258555
Reference: [5] Berikelashvili, G.: On the solvability of a nonlocal boundary value problem in the weighted Sobolev spaces.Proc. A. Razmadze Math. Inst., 119, 1999, 3-11, Zbl 0963.35045, MR 1710953
Reference: [6] Berikelashvili, G.: To a nonlocal generalization of the Dirichlet problem.Journal of Inequalities and Applications, 2006, 1, 2006, 6p, Art.ID 93858. Zbl 1108.35040, MR 2215469
Reference: [7] Bitsadze, A.V., Samarskií, A.A.: On some simple generalizations of linear elliptic boundary problems.Dokl. Akad. Nauk SSSR, 185, 1969, 739-740, Translation in Sov. Math. Dokl., 10 (1969), 398--400. Zbl 0187.35501, MR 0247271
Reference: [8] Browder, F.E.: Non-local elliptic boundary value problems.Amer. J. Math, 86, 1964, 735-750, Zbl 0131.09702, MR 0171989, 10.2307/2373156
Reference: [9] Canon, J.R.: The solution of heat equation subject to the specification of energy.Quart. Appl. Math., 21, 2, 1963, 155-160, MR 0160437, 10.1090/qam/160437
Reference: [10] Carleman, T.: Sur la théorie des équations intégrales et ses applications.1932, F{ü}ssli, Zurich, Zbl 0006.40001
Reference: [11] Courant, R., Hilbert, D.: Methods of mathematical physics.1953, Interscience Publishers, New York, Zbl 0053.02805, MR 0065391
Reference: [12] Devadze, D., Beridze, V.: Optimality Conditions and Solution Algorithms of Optimal Control Problems for Nonlocal Boundary-Value Problems.Journal of Mathematical Sciences, 218, 6, 2016, 731-736, Zbl 1354.49051, MR 3563651, 10.1007/s10958-016-3057-x
Reference: [13] Beridze, D. Sh. Devadze and V. Sh.: Optimality conditions for quasi-linear differential equations with nonlocal boundary conditions.Uspekhi Mat. Nauk, 68, 4, 2013, 179-180, Translation in Russian Math. Surveys, 68 (2013), 773--775. MR 3154819
Reference: [14] Devadze, D., Dumbadze, M.: An Optimal Control Problem for a Nonlocal Boundary Value Problem.Bulletin of The Georgian National Academy Of Sciences, 7, 2, 2013, 71-74, Zbl 1311.49054, MR 3136884
Reference: [15] Diaz, J.I., Rakotoson, J-M.: On a non-local stationary free-boundary problem arising in the confinement of a plasma in a stellarator geometry.Arch.Rational. Mech. Anal., 134, 1, 1996, 53-95, MR 1392309, 10.1007/BF00376255
Reference: [16] Gordeziani, D.G.: On methods for solving a class of non-local boundary-value problems.Ed. TSU, Tbilisi, 1981, 32p, MR 0626523
Reference: [17] Gordeziani, D.G., Avalishvili, G.A.: On the constructing of solutions of the nonlocal initial boundary value problems for one dimensional medium oscillation equations.Mathem. Mod., 12, 1, 2000, 93-103, MR 1773208
Reference: [18] Gordeziani, D.G., Djioev, T.Z.: On solvability of one boundary value problem for a nonlinear elliptic equations.Bull. Georgian Acad. Sci, 68, 2, 1972, 189-292, MR 0372414
Reference: [19] Gordeziani, G., Gordeziani, N., Avalishvili, G.: Non-local boundary value problem for some partial differential equations.Bulletin of the Georgian Academy of Sciences, 157, 1, 1998, 365-369, MR 1652066
Reference: [20] Gordezian, D., Gordeziani, E., Davitashvili, T., Meladze, G.: On the solution of some non-local boundary and initial-boundary value problems.GESJ: Computer Science and Telecommunications, 2010, 3, 161-169,
Reference: [21] Gulin, A.V., Marozova, V.A.: A family of selfjoint difference schemes.Diff. Urav., 44, 9, 2008, 1249-1254, MR 2484534
Reference: [22] Gurevich, P.L.: Asymptotics of Solution for nonlocal elliptic problems in plane bounded domains.Functional Differential Equations, 10, 1-2, 2003, 175-214, MR 2017408
Reference: [23] Gushchin, A.K., Mikhailov, V.P.: On the stability of nonlocal problems for a second order elliptic equation.Math. Sb., 185, 1, 1994, 121-160, MR 1264079
Reference: [24] Il'in, V.A., Moiseev, E.I.: A two-dimensional nonlocal boundary value problem for the Poisson operator in the differential and the difference interpretation.Mat. Model., 2, 8, 1990, 139-156, (Russian). MR 1086120
Reference: [25] Ionkin, N.I.: Solution of boundary-value problem in heat-conduction theory with non-classical boundary conditions.Diff, Urav., 13, 1977, 1177-1182, MR 0603292
Reference: [26] Kapanadze, D.V.: On a nonlocal Bitsadze-Samarskiĭ boundary value problem.Differentsial'nye Uravneniya, 23, 3, 1987, 543-545, (Russian). MR 0886591
Reference: [27] Mandzhavidze, G.F., Tuchke, V.: Some boundary value problems for first-order nonlinear differential systems on the plane.Boundary value problems of the theory of generalized analytic functions and their applications Tbilis. Gos. Univ., Tbilisi, 1983, 79-124, (Russian). MR 0745292
Reference: [28] Paneyakh, B.P: Some nonlocal boundary value problems for linear differential operators.Mat. Zametki, 35, 3, 1984, 425-434, (Russian). MR 0741809
Reference: [29] Pao, C.V.: Reaction diffusion equations with nonlocal boundary and nonlocal initial conditions.J. Math. Anal. Appl., 195, 3, 1995, 702-718, Zbl 0851.35063, MR 1356638, 10.1006/jmaa.1995.1384
Reference: [30] Sapagovas, M.P.: A difference method of increased order of accuracy for the Poisson equation with nonlocal conditions.Differential Equations, 44, 7, 2008, 1018-1028, MR 2479950, 10.1134/S0012266108070148
Reference: [31] Sapagovas, M.P., Chegis, R.Yu.: On some Boundary value problems with a non-local condition.Differentsial'nye Uravneniya, 23, 7, 1987, 1268-1274, (Russian). MR 0903982
Reference: [32] Shakeris, F., Dehghan, M.: The method of lines for solution of the one-dimensional wave equation subject to an integral consideration.Computers & Mathematics with Applications, 56, 9, 2008, 2175-2188, MR 2466739, 10.1016/j.camwa.2008.03.055
Reference: [33] Shelukin, V.V.: A non-local in time model for radionuclide propagation in Stokes fluid.Dinamika Splosh. Sredy, 107, 1993, 180-193, MR 1305005
Reference: [34] Skubachevskin, A.L.: On a spectrum of some nonlocal boundary value problems.Mat. Sb., 117, 7, 1982, 548-562, (Russian). MR 0651145
Reference: [35] Vekua, I.N.: Generalized analytic functions. Second edition.1988, Nauka, Moscow, (Russian). MR 0977975
Reference: [36] Vasylyk, V.B.: Exponentially convergent method for the $m$-point nonlocal problem for an elliptic differential equation in banach space.J. Numer. Appl. Math., 105, 2, 2011, 124-135,
.

Files

Files Size Format View
ActaOstrav_25-2017-2_6.pdf 396.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo