Previous |  Up |  Next

Article

Title: Stabilization of nonlinear systems with varying parameter by a control Lyapunov function (English)
Author: Kallel, Wajdi
Author: Kharrat, Thouraya
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 5
Year: 2017
Pages: 853-867
Summary lang: English
.
Category: math
.
Summary: In this paper, we provide an explicit homogeneous feedback control with the requirement that a control Lyapunov function exists for affine in control systems with bounded parameter that satisfies an homogeneous condition. We use a modified version of the Sontag's formula to achieve our main goal. Moreover, we prove that the existence of an homogeneous control Lyapunov function for an homogeneous system leads to an homogeneous closed-loop system which is asymptotically stable by an homogeneous feedback control. In addition, we study the finite time stability for affine in control systems with varying parameter. (English)
Keyword: feedback stabilization
Keyword: homogeneous system
Keyword: nonlinear control systems
Keyword: Lyapunov function
Keyword: finite time stability
MSC: 93D05
MSC: 93D15
idZBL: Zbl 06861628
idMR: MR3750107
DOI: 10.14736/kyb-2017-5-0853
.
Date available: 2018-02-26T11:47:41Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147097
.
Reference: [1] Artstein, Z.: Stabilization with relaxed controls..Nonlinear Anal. TMA 7 (1983), 1163-1173. Zbl 0525.93053, MR 0721403, 10.1016/0362-546x(83)90049-4
Reference: [2] Bhat, S. P., Bernstein, D. S.: Continuous finite-time stabilization of the translational and rotational double integrators..IEEE Trans. Automat. Control 43 (1998), 678-682. Zbl 0925.93821, MR 1618028, 10.1109/9.668834
Reference: [3] Cai, X. S., Han, Z. Z., Zhang, W.: Simultaneous stabilization for a collection of multi-input nonlinear systems with uncertain parameters..Acta Automat. Sinica 35 (2009), 206-209. MR 2531861, 10.3724/sp.j.1004.2009.00206
Reference: [4] Čelikovský, S., Aranda-Bricaire, E.: Constructive nonsmooth stabilization of triangular systems..Systems Control Lett. 36 (1999), 21-37. MR 1750623, 10.1016/s0167-6911(98)00062-0
Reference: [5] Huang, J., Yu, L., Xia, S.: Stabilization and finite time stabilization of nonlinear differential inclusions based on control Lyapunov function..Circuits Systems Signal Process. 33 (2015), 2319-2331. MR 3217482, 10.1007/s00034-014-9741-5
Reference: [6] Hong, Y., Wang, J., Cheng, D.: Adaptive finite-time control of nonlinear systems with parametric uncertainty..IEEE Trans. Automat. Control 51 (2006), 858-862. MR 2232614, 10.1109/tac.2006.875006
Reference: [7] Jerbi, H.: A manifold-like characterization of asymptotic stabilizability of homogeneous systems..Systems Control Lett. 41 (2002), 173-178. MR 2072233, 10.1016/s0167-6911(01)00172-4
Reference: [8] Jerbi, H., Kallel, W., Kharrat, T.: On the stabilization of homogeneous perturbed systems..J. Dynamical Control Syst. 14 (2008), 595-606. MR 2448693, 10.1007/s10883-008-9053-9
Reference: [9] Jerbi, H., Kharrat, T.: Only a level set of a control Lyapunov function for homogeneous systems..Kybernetika 41 (2005), 593-600. MR 2192425
Reference: [10] Krstic, M., Kokotovic, P. V.: Control Lyapunov function for adaptive nonlinear stabilization..Systems Control Lett. 26 (1995), 17-23. MR 1347637, 10.1016/0167-6911(94)00107-7
Reference: [11] Massera, J. L.: Contributions to stability theory..Ann. Math. 64 (1956), 182-206. MR 0079179, 10.2307/1969955
Reference: [12] Moulay, E.: Stabilization via homogeneous feedback controls..Automatica 44 (2008), 2981-2984. MR 2527229, 10.1016/j.automatica.2008.05.003
Reference: [13] Moulay, E., Perruquetti, W.: Finite time stability and stabilization of a class of continuous systems..J. Math. Anal. Appl. 323 (2006), 1430-1443. Zbl 1131.93043, MR 2260193, 10.1016/j.jmaa.2005.11.046
Reference: [14] Rosier, L.: Homogeneous Lyapunov function for homogeneous continuous vector field..Systems Control Lett. 19 (1992), 467-473. Zbl 0762.34032, MR 1195304, 10.1016/0167-6911(92)90078-7
Reference: [15] Sepulchre, R., Aeyels, D.: Homogeneous Lyapunov functions and necessary conditions for stabilization..Math. Control Signals Syst. 9 (1996), 34-58. MR 1410047, 10.1007/bf01211517
Reference: [16] Shafiei, M. H., Yazdanpanah, M. J.: Stabilization of nonlinear systems with a slowly varying parameter by a control Lyapunov function..ISA Trans. 49 (2010), 215-221. 10.1016/j.isatra.2009.11.004
Reference: [17] Sontag, E. D.: A "universal" construction of Artstein's Theorem on nonlinear stabilization..Systems Control Lett. 13 (1989), 117-123. MR 1014237, 10.1016/0167-6911(89)90028-5
Reference: [18] Sontag, E. D.: A Lyapunov-like caharacterization of asymptotic controlability..SIAM J. Control Optim. 21 (1983), 462-471. MR 0696908, 10.1137/0321028
Reference: [19] Tsinias, J.: Stabilization of affine in control nonlinear systems..Nonlinear Anal. TMA 12 (1988), 1283-1296. Zbl 0662.93055, MR 0969506, 10.1016/0362-546x(88)90060-0
Reference: [20] Tsinias, J.: Sufficient Lyapunov like conditions for stabilization..Math. Control Signals Syst. 2 (1989), 343-357. Zbl 0688.93048, MR 1015672, 10.1007/bf02551276
Reference: [21] Zhang, W., Su, H., Cai, X., Guo, H.: A control Lyapunov approach to stabilization of affine nonlinear systems with bounded uncertain parameters..Circuits Systems Signal Process. 34 (2015), 341-352. MR 3299171, 10.1007/s00034-014-9848-8
Reference: [22] Wang, H., Han, Z., Zhang, W., Xie, Q.: Synchronization of unified chaotic systems with uncertain parameters based on the CLF..Nonlinear Analysis: Real World Appl. 10 (2009), 2842-2849. MR 2523247, 10.1016/j.nonrwa.2008.08.010
Reference: [23] Wang, H., Han, Z., Zhang, W., Xie, Q.: Chaos control and synchronization of unified chaotic systems via linear control..J. Sound Vibration 320 (2009), 365-372. MR 2335867, 10.1016/j.jsv.2008.07.023
.

Files

Files Size Format View
Kybernetika_53-2017-5_7.pdf 655.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo