Previous |  Up |  Next

Article

Keywords:
nullnorm; nounded lattice; partial order; equivalence
Summary:
In this paper, an equivalence on the class of nullnorms on a bounded lattice based on the equality of the orders induced by nullnorms is introduced. The set of all incomparable elements w.r.t. the order induced by nullnorms is investigated. Finally, the recently posed open problems have been solved.
References:
[1] Aşıcı, E.: An order induced by nullnorms and its properties. Fuzzy Sets and Systems 325 (2017), 35-46. DOI 10.1016/j.fss.2016.12.004 | MR 3690353
[2] Baczyński, M., Jayaram, B.: Fuzzy Implications. Springer 2008. Zbl 1293.03012
[3] Birkhoff, G.: Lattice Theory. Providence 1967. DOI 10.1090/coll/025 | MR 0227053 | Zbl 0537.06001
[4] Calvo, T., Baets, B. De, Fodor, J.: The functional equations of Frank and Alsina for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 385-394. DOI 10.1016/s0165-0114(99)00125-6 | MR 1829256 | Zbl 0977.03026
[5] Dubois, D., Prade, H.: A review of fuzzy set aggregation connectives. Inform. Sci. 36 (1985), 85-121. DOI 10.1016/0020-0255(85)90027-1 | MR 0813766 | Zbl 0582.03040
[6] Ertuğrul, Ü., Kesicioğlu, M. N., Karaçal, F.: Ordering based on uninorms. Inform. Sci. 330 (2016), 315-327. DOI 10.1016/j.ins.2015.10.019
[7] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions. Cambridge University Press 2009. MR 2538324 | Zbl 1206.68299
[8] Hliněná, D., Kalina, M., Král, P.: Pre-orders and orders generated by conjunctive uninorms. In: 12th International Conference on Fuzzy Set Theory and Its Applications. Communications in Computer and Inform. Sci. 444 (2014), 307-316. MR 3616458
[9] Karaçal, F., Ince, M. A., Mesiar, R.: Nullnorms on bounded lattices. Inform. Sci. 325 (2015), 227-236. DOI 10.1016/j.ins.2015.06.052 | MR 3392300
[10] Karaçal, F., Mesiar, R.: Uninorms on bounded lattices. Fuzzy Sets and Systems 261 (2015), 33-43. DOI 10.1016/j.fss.2014.05.001 | MR 3291484
[11] Karaçal, F., Kesicioğlu, M. N.: A T-partial order obtained from t-norms. Kybernetika 47 (2011), 300-314. MR 2828579 | Zbl 1245.03086
[12] Kesicioğlu, M. N., Ertuğrul, Ü., Karaçal, F.: An Equivalence relation based on the U-partial order. Inform. Sci. 411 (2017), 39-51. DOI 10.1016/j.ins.2017.05.020 | MR 3659313
[13] Kesicioğlu, M. N., Karaçal, F., Mesiar, R.: Order-equivalent triangular norms. Fuzzy Sets and Systems 268 (2015), 59-71. MR 3320247
[14] Kesicioğlu, M. N., Mesiar, R.: Ordering based on implications. Inform. Sci. 276 (2014), 377-386. DOI 10.1016/j.ins.2013.12.047 | MR 3206505
[15] Klement, E. P., Mesiar, R., Pap, E.: Triangular Norms. Kluwer Academic Publishers 2000. DOI 10.1007/978-94-015-9540-7 | MR 1790096 | Zbl 1087.20041
[16] Ma, Z., Wu, W. M.: Logical operators on complete lattices. Inform. Sci. 55 (1991), 77-97. DOI 10.1016/0020-0255(91)90007-H | MR 1080449 | Zbl 0741.03010
[17] Mas, M., Mayor, G., Torrens, J.: t-operators. Int. J. Uncertainty Fuzziness Knowledge-Based Syst. 7 (1999), 31-50. DOI 10.1142/s0218488599000039 | MR 1691482 | Zbl 1005.03047
[18] Mas, M., Mayor, G., Torrens, J.: The modularity condition for uninorms nd t-operators. Fuzzy Sets and Systems 126 (2002), 207-218. DOI 10.1016/s0165-0114(01)00055-0 | MR 1884687
[19] Yager, R. R.: Aggregation operators and fuzzy systems modelling. Fuzzy Sets and Systems 67 (1994), 129-145. DOI 10.1016/0165-0114(94)90082-5 | MR 1302575
Partner of
EuDML logo