[2] Bělohlávek, R.:
Fuzzy Relational Systems: Foundations and Principles. Kluwer Academic/Plenum Publishers, New York 2002.
DOI 10.1007/978-1-4615-0633-1
[4] Bělohlávek, R., Vychodil, V.:
Fuzzy Equational Logic. Studies in Fuzziness and Soft Computing, Springer 186 (2005), pp. 139-170.
DOI 10.1007/11376422_3
[5] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.:
Fuzzy identities with application to fuzzy semigroups. Inform. Sci. 266 (2014), 148-159.
DOI 10.1016/j.ins.2013.11.007 |
MR 3165413
[6] Budimirović, B., Budimirović, V., Šešelja, B., Tepavčević, A.:
Fuzzy equational classes are fuzzy varieties. Iranian J. Fuzzy Systems 10 (2013), 1-18.
MR 3135796
[10] Czédli, G., Erné, M., Šešelja, B., Tepavčević, A.:
Characteristic triangles of closure operators with applications in general algebra. Algebra Univers. 62 (2009), 399-418.
DOI 10.1007/s00012-010-0059-2 |
MR 2670173
[11] Demirci, M.:
Foundations of fuzzy functions and vague algebra based on many-valued equivalence relations. Part I: Fuzzy functions and their applications. Part II: Vague algebraic notions. Part III: Constructions of vague algebraic notions and vague arithmetic operations. Int. J. General Systems 32 (2003), 3, 123-155, 157-175, 177-201.
DOI 10.1080/0308107031000090765 |
MR 1967128
[12] Demirci, M.:
A theory of vague lattices based on many-valued equivalence relations I: general representation results. Fuzzy Sets and Systems 151 (2005), 437-472.
DOI 10.1016/j.fss.2004.06.017 |
MR 2126168
[13] Demirci, M.:
A theory of vague lattices based on many-valued equivalence relations II: Complete lattices. Fuzzy Sets and Systems 151 (2005), 473-489.
DOI 10.1016/j.fss.2004.06.004 |
MR 2126169
[14] Nola, A. Di, Gerla, G.:
Lattice valued algebras. Stochastica 11 (1987), 137-150.
MR 0990882
[16] Fourman, M. P., Scott, D. S.:
Sheaves and logic. In: Applications of Sheaves (M. P. Fourman, C. J. Mulvey and D. S. Scott, eds.), Lecture Notes in Mathematics, 753, Springer, Berlin, Heidelberg, New York 1979, pp. 302-401.
DOI 10.1007/bfb0061824 |
MR 0555551
[18] Gottwald, S.:
Universes of fuzzy sets and axiomatizations of fuzzy set theory. Part II: Category theoretic approaches. Studia Logica 84 (2006) 1, 23-50, 1143-1174.
DOI 10.1007/s11225-006-9001-1 |
MR 2271287
[22] Klir, G., Yuan, B.:
Fuzzy Sets and Fuzzy Logic. Prentice Hall, New Jersey 1995.
MR 1329731
[24] Šešelja, B., Tepavčević, A.:
Fuzzy identities. In: Proc. 2009 IEEE International Conference on Fuzzy Systems, pp. 1660-1664.
DOI 10.1109/fuzzy.2009.5277317