Previous |  Up |  Next

Article

Title: On minimal ideals in the ring of real-valued continuous functions on a frame (English)
Author: Karimi Feizabadi, Abolghasem
Author: Estaji, Ali Akbar
Author: Abedi, Mostafa
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 54
Issue: 1
Year: 2018
Pages: 1-13
Summary lang: English
.
Category: math
.
Summary: Let $\mathcal{R}L$ be the ring of real-valued continuous functions on a frame $L$. The aim of this paper is to study the relation between minimality of ideals $I$ of $\mathcal{R}L$ and the set of all zero sets in $L$ determined by elements of $I$. To do this, the concepts of coz-disjointness, coz-spatiality and coz-density are introduced. In the case of a coz-dense frame $L$, it is proved that the $f$-ring $\mathcal{R}L$ is isomorphic to the $f$-ring $ C(\Sigma L)$ of all real continuous functions on the topological space $\Sigma L$. Finally, a one-one correspondence is presented between the set of isolated points of $\Sigma L$ and the set of atoms of $L$. (English)
Keyword: ring of real-valued continuous functions on a frame
Keyword: coz-disjoint
Keyword: coz-dense and coz-spatial frames
Keyword: zero sets in pointfree topology
Keyword: $z$-ideal
Keyword: strongly $z$-ideal
MSC: 06D22
MSC: 13A15
MSC: 54C30
idZBL: Zbl 06861554
idMR: MR3783288
DOI: 10.5817/AM2018-1-1
.
Date available: 2018-03-12T13:41:49Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147104
.
Reference: [1] Aliabad, A.R., Azarpanah, F., Paimann, M.: Relative $z$-ideals and $z^0$-ideals in the factor rings of $C(X)$.Bull. Iran. Math. Soc. 36 (2010), 211–226. MR 2743400
Reference: [2] Azarpanah, F., Karamzadeh, O.A.S., Rezai Aliabad, A.: On $z^0$-ideals in $C(X)$.Fund. Math. 160 (1999). MR 1694400
Reference: [3] Azarpanah, F., Taherifar, A.: Relative $z$-ideals in $C(X)$.Topology Appl. 156 (2009), 1711–1717. MR 2521707
Reference: [4] Banaschewski, B.: The real numbers in pointfree topology.Textos de Mathemática (Séries B), No. 12, Departamento de Mathemática da Universidade de Coimbra, Coimbra (1997). MR 1621835
Reference: [5] Banaschewski, B., Mulvey, C.J.: Stone-Čech compactification of locales, I.Houston J. Math. 6 (1980), 301–312. MR 0597771
Reference: [6] Dube, T.: Concerning $P$-frames, essential $P$-frames and strongly zero-dimensional frame.Algebra Universalis 69 (2009), 115–138. MR 2551788, 10.1007/s00012-009-0006-2
Reference: [7] Dube, T.: Some algebraic characterizations of F-frames.Algebra Universalis 62 (2009), 273–288. MR 2661380, 10.1007/s00012-010-0054-7
Reference: [8] Dube, T.: On the ideal of functions with compact support in pointfree function rings.Acta Math. Hungar. 129 (2010), 205–226. Zbl 1299.06021, MR 2737723, 10.1007/s10474-010-0024-8
Reference: [9] Dube, T.: A note on the socle of certain types of f-rings.Bull. Iran. Math. Soc. 2 (2012), 517–528. MR 3005080
Reference: [10] Ebrahimi, M.M., Karimi Feizabadi, A.: Pointfree prime representation of real Riesz maps.Algebra Universalis 54 (2005), 291–299. MR 2219412, 10.1007/s00012-005-1945-x
Reference: [11] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Strongly fixed ideals in $ C (L)$ and compact frames.Arch. Math. (Brno) 51 (2015), 1–12. MR 3338762, 10.5817/AM2015-1-1
Reference: [12] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Zero set in pointfree topology and strongly $z$-ideals.Bull. Iran. Math. Soc. 41 (2015), 1071–1084. MR 3416615
Reference: [13] Estaji, A.A., Karimi Feizabadi, A., Abedi, M.: Intersection of essential ideals in the ring of real-valued continuous functions on a frame.J. of Algebraic System 5 (2017), no. 2, 149–161. MR 3744620
Reference: [14] Gillman, L., Jerison, M.: Rings of continuous functions.Springer-Verlag, 1976. MR 0407579
Reference: [15] Gutiérrez García, J., Picado, J., Pultr, A.: Notes on point-free real functions and sublocales.Categorical Methods in Algebra and Topology, Mathematical Texts, no. 46, University of Coimbra, 2014, pp. 167–200. MR 3330905
Reference: [16] Karamzadeh, O.A.S., Rostami, M.: On the intrinsic topology and some related ideals of $C(X)$.Proc. Amer. Math. Soc. 93 (1985), 179–184. Zbl 0524.54013, MR 0766552
Reference: [17] Picado, J., Pultr, A.: Frames and Locales: Topology without points.Frontiers in Mathematics, Springer Basel, 2012. MR 2868166
.

Files

Files Size Format View
ArchMathRetro_054-2018-1_1.pdf 561.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo